The synapse assembly model.

[1]  J. Eisinger,et al.  Lateral mobility of lipid analogues and GPI-anchored proteins in supported bilayers determined by fluorescent bead tracking , 1993, The Journal of Membrane Biology.

[2]  Christoph Wülfing,et al.  Costimulation and endogenous MHC ligands contribute to T cell recognition , 2002, Nature Immunology.

[3]  Jay T. Groves,et al.  Synaptic pattern formation during cellular recognition , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[4]  S. Dzik,et al.  The immunological synapse: A molecular machine controlling T cell activation , 2000 .

[5]  C. Zhu,et al.  Kinetics and mechanics of cell adhesion. , 2000, Journal of biomechanics.

[6]  M. Davis,et al.  A receptor/cytoskeletal movement triggered by costimulation during T cell activation. , 1998, Science.

[7]  J. Lippincott-Schwartz,et al.  ZAP-70 Association with T Cell Receptor ζ (TCRζ): Fluorescence Imaging of Dynamic Changes upon Cellular Stimulation , 1998, The Journal of cell biology.

[8]  Y. Tominaga,et al.  Affinity and kinetic analysis of the molecular interaction of ICAM-1 and leukocyte function-associated antigen-1. , 1998, Journal of immunology.

[9]  J. Chauvin,et al.  Engagement of T cell receptor triggers its recruitment to low‐density detergent‐insoluble membrane domains , 1998, The EMBO journal.

[10]  Patricia L. Widder,et al.  A Novel Adaptor Protein Orchestrates Receptor Patterning and Cytoskeletal Polarity in T-Cell Contacts , 1998, Cell.

[11]  Colin R. F. Monks,et al.  Three-dimensional segregation of supramolecular activation clusters in T cells , 1998, Nature.

[12]  D. Jeanfavre,et al.  Molecular regulation of the interaction between leukocyte function-associated antigen-1 and soluble ICAM-1 by divalent metal cations. , 1998, Journal of immunology.

[13]  R. Xavier,et al.  Membrane compartmentation is required for efficient T cell activation. , 1998, Immunity.

[14]  M. Davis,et al.  Visualizing the dynamics of T cell activation: intracellular adhesion molecule 1 migrates rapidly to the T cell/B cell interface and acts to sustain calcium levels. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[15]  E. Sackmann,et al.  Membrane bending modulus and adhesion energy of wild-type and mutant cells of Dictyostelium lacking talin or cortexillins. , 1998, Biophysical journal.

[16]  K. Jacobson,et al.  Cellular determinants of the lateral mobility of neural cell adhesion molecules. , 1997, Biochimica et biophysica acta.

[17]  A. Lanzavecchia,et al.  Degradation of  T Cell Receptor (TCR)–CD3-ζ Complexes after Antigenic Stimulation , 1997, The Journal of experimental medicine.

[18]  Michael Loran Dustin,et al.  Making the T cell receptor go the distance: a topological view of T cell activation. , 1997, Immunity.

[19]  Partho Ghosh,et al.  Structure of the complex between human T-cell receptor, viral peptide and HLA-A2 , 1996, Nature.

[20]  S. Boxer,et al.  Electrical manipulation of glycan-phosphatidyl inositol-tethered proteins in planar supported bilayers. , 1996, Biophysical journal.

[21]  Robyn L. Stanfield,et al.  An αβ T Cell Receptor Structure at 2.5 Å and Its Orientation in the TCR-MHC Complex , 1996, Science.

[22]  J M Miller,et al.  Adhesion-activating phorbol ester increases the mobility of leukocyte integrin LFA-1 in cultured lymphocytes. , 1996, The Journal of clinical investigation.

[23]  Michael Loran Dustin,et al.  Visualization of CD2 interaction with LFA-3 and determination of the two-dimensional dissociation constant for adhesion receptors in a contact area , 1996, The Journal of cell biology.

[24]  I. Khrebtukova,et al.  Class II cytoplasmic and transmembrane domains are not required for class II-mediated B cell spreading. , 1995, Immunology Letters.