Accurate estimation of surface water volume in tufa lake group using UAV-captured imagery and ANNs

[1]  Jiayuan Lin,et al.  Fully-covered bathymetry of clear tufa lakes using UAV-acquired overlapping images and neural networks , 2022, Journal of Hydrology.

[2]  E. Puniach,et al.  Determining changes in building tilts based on UAV photogrammetry , 2022, Measurement.

[3]  Liping Zhu,et al.  Bathymetric mapping and estimation of water storage in a shallow lake using a remote sensing inversion method based on machine learning , 2022, Int. J. Digit. Earth.

[4]  N. Chan,et al.  A review on the research progress of lake water volume estimation methods. , 2022, Journal of environmental management.

[5]  S. Massuel,et al.  Deriving bathymetries from unmanned aerial vehicles: a case study of a small intermittent reservoir , 2021, Hydrological Sciences Journal.

[6]  Liping Zhu,et al.  Multi-resolution satellite images bathymetry inversion of Bangda Co in the western Tibetan Plateau , 2021, International Journal of Remote Sensing.

[7]  Shaik Khamuruddeen,et al.  An efficient clinical support system for heart disease prediction using TANFIS classifier , 2021, Comput. Intell..

[8]  Paolo Tarolli,et al.  Mapping vegetation-induced obstruction in agricultural ditches: A low-cost and flexible approach by UAV-SfM , 2021 .

[9]  M. Ma,et al.  Mapping topo-bathymetry of transparent tufa lakes using UAV-based photogrammetry and RGB imagery , 2021 .

[10]  L. Jorge,et al.  A Review on Deep Learning in UAV Remote Sensing , 2021, Int. J. Appl. Earth Obs. Geoinformation.

[11]  Toby P. Breckon,et al.  Adopting deep learning methods for airborne RGB fluvial scene classification , 2020 .

[12]  S. Jayachitra,et al.  Multi-Feature Analysis for Automated Brain Stroke Classification Using Weighted Gaussian Naïve Bayes Classifier , 2020, J. Circuits Syst. Comput..

[13]  Bisheng Yang,et al.  Satellite-derived bathymetry using the ICESat-2 lidar and Sentinel-2 imagery datasets , 2020 .

[14]  Junsheng Li,et al.  The increasing water clarity of Tibetan lakes over last 20 years according to MODIS data , 2020 .

[15]  S. Tavani,et al.  Terrestrial SfM-MVS photogrammetry from smartphone sensors , 2020 .

[16]  Geng Sun,et al.  The Color Formation Mechanism of the Blue Karst Lakes in Jiuzhaigou Nature Reserve, Sichuan, China , 2020, Water.

[17]  A. Mushkin,et al.  Determining Bathymetry of Shallow and Ephemeral Desert Lakes Using Satellite Imagery and Altimetry , 2020, Geophysical Research Letters.

[18]  A. Iroumé,et al.  Quantification of fluvial wood using UAVs and structure from motion , 2019, Geomorphology.

[19]  Fanlin Yang,et al.  Estimating water levels and volumes of lakes dated back to the 1980s using Landsat imagery and photon-counting lidar datasets , 2019, Remote Sensing of Environment.

[20]  Carlos Cabo,et al.  Structure from Motion Photogrammetry in Forestry: a Review , 2019, Current Forestry Reports.

[21]  Jaehyun Shin,et al.  Retrieving shallow stream bathymetry from UAV-assisted RGB imagery using a geospatial regression method , 2019, Geomorphology.

[22]  David M. Hannah,et al.  Drone-based Structure-from-Motion provides accurate forest canopy data to assess shading effects in river temperature models. , 2019, The Science of the total environment.

[23]  J. Pagán,et al.  Monitoring the dune-beach system of Guardamar del Segura (Spain) using UAV, SfM and GIS techniques. , 2019, The Science of the total environment.

[24]  Bahareh Kalantar,et al.  Land Cover Classification from fused DSM and UAV Images Using Convolutional Neural Networks , 2019, Remote. Sens..

[25]  S. Lane,et al.  Comparison of remote sensing based approaches for mapping bathymetry of shallow, clear water rivers , 2019, Geomorphology.

[26]  Arif Oguz Altunel,et al.  Accuracy assessment of a low-cost UAV derived digital elevation model (DEM) in a highly broken and vegetated terrain , 2019, Measurement.

[27]  Milad Niroumand-Jadidi,et al.  Multiple Optimal Depth Predictors Analysis (MODPA) for river bathymetry: Findings from spectroradiometry, simulations, and satellite imagery , 2018, Remote Sensing of Environment.

[28]  Yi Lin,et al.  Aboveground Tree Biomass Estimation of Sparse Subalpine Coniferous Forest with UAV Oblique Photography , 2018, Remote. Sens..

[29]  Phillip B. Chilson,et al.  Merging Unmanned Aerial Systems (UAS) Imagery and Echo Soundings with an Adaptive Sampling Technique for Bathymetric Surveys , 2018, Remote. Sens..

[30]  Anders Knudby,et al.  Satellite derived photogrammetric bathymetry , 2018, ISPRS Journal of Photogrammetry and Remote Sensing.

[31]  Shiqiang Zhang,et al.  Detecting, Extracting, and Monitoring Surface Water From Space Using Optical Sensors: A Review , 2018, Reviews of Geophysics.

[32]  Miloš Rusnák,et al.  Template for high-resolution river landscape mapping using UAV technology , 2018 .

[33]  P. Cui,et al.  Seismogenic fault and topography control on the spatial patterns of landslides triggered by the 2017 Jiuzhaigou earthquake , 2018, Journal of Mountain Science.

[34]  G. Qiu,et al.  Effects of forest evapotranspiration on soil water budget and energy flux partitioning in a subalpine valley of China , 2017 .

[35]  Lixia Liu Factors Affecting Tufa Degradation in Jiuzhaigou National Nature Reserve, Sichuan, China , 2017 .

[36]  Filippo Bandini,et al.  Measuring water level in rivers and lakes from lightweight Unmanned Aerial Vehicles , 2017 .

[37]  B. Höfle,et al.  Characterizing tufa barrages in relation to channel bed morphology in a small karstic river by airborne LiDAR topo-bathymetry , 2016 .

[38]  S. Lugli,et al.  Are climate warming and enhanced atmospheric deposition of sulfur and nitrogen threatening tufa landscapes in Jiuzhaigou National Nature Reserve, Sichuan, China? , 2016, The Science of the total environment.

[39]  F. Visser,et al.  Quantifying submerged fluvial topography using hyperspatial resolution UAS imagery and structure from motion photogrammetry , 2015 .

[40]  I. Colomina,et al.  Unmanned aerial systems for photogrammetry and remote sensing: A review , 2014 .

[41]  Jin Li,et al.  A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors , 2011, Ecol. Informatics.

[42]  T. Ford,et al.  A review of tufa and travertine deposits of the world , 1996 .

[43]  Fawzi H. Zarzoura,et al.  Hybrid Artificial Neural Networks for Modeling Shallow-Water Bathymetry via Satellite Imagery , 2022, IEEE Transactions on Geoscience and Remote Sensing.

[44]  Derek T. Robinson,et al.  Agricultural erosion modelling: Evaluating USLE and WEPP field-scale erosion estimates using UAV time-series data , 2021, Environ. Model. Softw..

[45]  Baofeng Di,et al.  Wetlands in the Jiuzhaigou World Natural Heritage site of south-west China: classification and recent changes , 2017 .