Barycentric Subdivision of Cayley Graphs With Constant Edge Metric Dimension

A motion of a robot in space is represented by a graph. A robot change its position from point to point and its position can be determined itself by distinct labelled landmarks points. The problem is to determine the minimum number of landmarks to find the unique position of the robot, this phenomena is known as metric dimension. Motivated by this a new modification was introduced by Kelenc. In this paper, we computed the edge metric dimension of barycentric subdivision of Cayley graphs <inline-formula> <tex-math notation="LaTeX">$Cay(\mathbb {Z}_{\alpha }\oplus \mathbb {Z}_{\beta })$ </tex-math></inline-formula>, for every <inline-formula> <tex-math notation="LaTeX">$\alpha \ge 6, \beta \ge 2$ </tex-math></inline-formula> and an observation is made that it has constant edge metric dimension and only three carefully chosen vertices can appropriately suffice to resolve all the edges of barycentric subdivision of Cayley graphs <inline-formula> <tex-math notation="LaTeX">$Cay(\mathbb {Z}_{\alpha }\oplus \mathbb {Z}_{\beta })$ </tex-math></inline-formula>.

[1]  Imran Javaid,et al.  Metric Dimension and Determining Number of Cayley Graphs , 2012 .

[2]  Thomas Erlebach,et al.  Network Discovery and Verification , 2005, IEEE Journal on Selected Areas in Communications.

[3]  ALI AHMAD,et al.  MINIMAL DOUBLY RESOLVING SETS OF NECKLACE GRAPH , 2018 .

[4]  David R. Wood,et al.  On the Metric Dimension of Cartesian Products of Graphs , 2005, SIAM J. Discret. Math..

[5]  Karen Meagher,et al.  On the metric dimension of Grassmann graphs , 2010, Discret. Math. Theor. Comput. Sci..

[6]  Ismael González Yero,et al.  Mixed metric dimension of graphs , 2016, Appl. Math. Comput..

[7]  Ioan Tomescu,et al.  Metric bases in digital geometry , 1984, Comput. Vis. Graph. Image Process..

[8]  Tomás Vetrík,et al.  Computing the metric dimension of the categorial product of some graphs , 2017, Int. J. Comput. Math..

[9]  M. Imran,et al.  Computing the metric dimension of convex polytopes generated by wheel related graphs , 2016 .

[10]  Gary Chartrand,et al.  Resolvability in graphs and the metric dimension of a graph , 2000, Discret. Appl. Math..

[11]  N. Duncan Leaves on trees , 2014 .

[12]  Milica Stojanovic,et al.  Minimal doubly resolving sets and the strong metric dimension of some convex polytopes , 2012, Appl. Math. Comput..

[13]  Ali Ahmad,et al.  ON CLASSES OF REGULAR GRAPHS WITH CONSTANT METRIC DIMENSION , 2013 .

[14]  Muhammad Imran On the metric dimension of barycentric subdivision of Cayley graphs , 2016 .

[15]  Gary Chartrand,et al.  Resolvability and the upper dimension of graphs , 2000 .

[16]  M. Johnson,et al.  Structure-activity maps for visualizing the graph variables arising in drug design. , 1993, Journal of biopharmaceutical statistics.

[17]  Ismael González Yero,et al.  Uniquely identifying the edges of a graph: The edge metric dimension , 2016, Discret. Appl. Math..

[18]  Musavarah Sarwar,et al.  On the metric dimension of two families of convex polytopes , 2016 .

[19]  Azriel Rosenfeld,et al.  Landmarks in Graphs , 1996, Discret. Appl. Math..

[20]  P. Cameron,et al.  Base size, metric dimension and other invariants of groups and graphs , 2011 .