New Self-adaptive Probabilistic Neural Networks in Bioinformatic and Medical Tasks

We propose a self–adaptive probabilistic neural network model, which incorporates optimization algorithms to determine its spread parameters. The performance of the proposed model is investigated on two protein localization problems, as well as on two medical diagnostic tasks. Experimental results are compared with that of feedforward neural networks and support vector machines. Different sampling techniques are used and statistical tests are conducted to calculate the statistical significance of the results.

[1]  Martin A. Riedmiller,et al.  A direct adaptive method for faster backpropagation learning: the RPROP algorithm , 1993, IEEE International Conference on Neural Networks.

[2]  Chenn-Jung Huang A PERFORMANCE ANALYSIS OF CANCER CLASSIFICATION USING FEATURE EXTRACTION AND PROBABILISTIC NEURAL NETWORKS , 2002 .

[3]  Bayya Yegnanarayana,et al.  Supervised texture classification using a probabilistic neural network and constraint satisfaction model , 1998, IEEE Trans. Neural Networks.

[4]  Mark M. Millonas,et al.  Swarms, Phase Transitions, and Collective Intelligence , 1993, adap-org/9306002.

[5]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[6]  Bernhard E. Boser,et al.  A training algorithm for optimal margin classifiers , 1992, COLT '92.

[7]  George D. Magoulas,et al.  Neural network-based colonoscopic diagnosis using on-line learning and differential evolution , 2004, Appl. Soft Comput..

[8]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[9]  Russell C. Eberhart,et al.  Parameter Selection in Particle Swarm Optimization , 1998, Evolutionary Programming.

[10]  E Holmes,et al.  Metabonomic characterization of genetic variations in toxicological and metabolic responses using probabilistic neural networks. , 2001, Chemical research in toxicology.

[11]  Roy L. Streit,et al.  Maximum likelihood training of probabilistic neural networks , 1994, IEEE Trans. Neural Networks.

[12]  Thomas R. Shultz,et al.  Constraint-Satisfaction Models , 2001 .

[13]  Gopal Kanji,et al.  100 Statistical Tests , 1994 .

[14]  Michael N. Vrahatis,et al.  Evolutionary Computation Techniques for Optimizing Fuzzy Cognitive Maps in Radiation Therapy Systems , 2004, GECCO.

[15]  David S. Touretzky,et al.  Optical Chinese character recognition using probabilistic neural networks , 1997, Pattern Recognit..

[16]  David R. Gilbert,et al.  An Empirical Comparison of Supervised Machine Learning Techniques in Bioinformatics , 2003, APBC.

[17]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[18]  R. Orr,et al.  Use of a Probabilistic Neural Network to Estimate the Risk of Mortality after Cardiac Surgery , 1997, Medical decision making : an international journal of the Society for Medical Decision Making.

[19]  Marimuthu Palaniswami,et al.  Computational Intelligence: A Dynamic System Perspective , 1995 .

[20]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[21]  Pierre Baldi,et al.  Bioinformatics - the machine learning approach (2. ed.) , 2000 .

[22]  D. F. Specht,et al.  Experience with adaptive probabilistic neural networks and adaptive general regression neural networks , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).

[23]  Tulay Yildirim,et al.  A DATA SELECTION METHOD FOR PROBABILISTIC NEURAL NETWORKS , 2004 .

[24]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[25]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[26]  Cornetto Test , 2020, ACM Transactions on Algorithms.

[27]  Jian Guo,et al.  A Novel Method for Protein Subcellular Localization Based on Boosting and Probabilistic Neural Network , 2004, APBC.

[28]  E. Biscaia,et al.  The use of particle swarm optimization for dynamical analysis in chemical processes , 2002 .

[29]  M. A. Abido Optimal des'ign of Power System Stabilizers Using Particle Swarm Opt'imization , 2002, IEEE Power Engineering Review.

[30]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[31]  A. Cockshott,et al.  Improving the fermentation medium for Echinocandin B production part II: Particle swarm optimization , 2001 .

[32]  Michael N. Vrahatis,et al.  On the computation of all global minimizers through particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[33]  Thomas G. Dietterich Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms , 1998, Neural Computation.

[34]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[35]  Sun-Yuan Kung,et al.  Quantification and segmentation of brain tissues from MR images: a probabilistic neural network approach , 1998, IEEE Trans. Image Process..

[36]  Christian Igel,et al.  Empirical evaluation of the improved Rprop learning algorithms , 2003, Neurocomputing.

[37]  Nicos G. Pavlidis,et al.  Optimizing the Performance of Probabilistic Neural Networks in a BioinformaticsTa sk , 2004 .

[38]  Richard S. Johannes,et al.  Using the ADAP Learning Algorithm to Forecast the Onset of Diabetes Mellitus , 1988 .

[39]  Michael R. Berthold,et al.  Constructive training of probabilistic neural networks , 1998, Neurocomputing.

[40]  Paul Horton,et al.  A Probabilistic Classification System for Predicting the Cellular Localization Sites of Proteins , 1996, ISMB.

[41]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[42]  M. A. Abido,et al.  Optimal power flow using particle swarm optimization , 2002 .

[43]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[44]  Lutz Prechelt,et al.  A Set of Neural Network Benchmark Problems and Benchmarking Rules , 1994 .

[45]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[46]  Michael N. Vrahatis,et al.  Recent approaches to global optimization problems through Particle Swarm Optimization , 2002, Natural Computing.

[47]  Ioan Cristian Trelea,et al.  The particle swarm optimization algorithm: convergence analysis and parameter selection , 2003, Inf. Process. Lett..

[48]  Donald F. Specht,et al.  Probabilistic neural networks , 1990, Neural Networks.

[49]  Eibe Frank,et al.  Evaluating the Replicability of Significance Tests for Comparing Learning Algorithms , 2004, PAKDD.