When Can Splits be Drawn in the Plane?
暂无分享,去创建一个
[1] Komei Fukuda,et al. Antipodal graphs and oriented matroids , 1993, Discret. Math..
[2] D. Djoković. Distance-preserving subgraphs of hypercubes , 1973 .
[3] T. Zaslavsky. Facing Up to Arrangements: Face-Count Formulas for Partitions of Space by Hyperplanes , 1975 .
[4] Daniel H. Huson,et al. SplitsTree: analyzing and visualizing evolutionary data , 1998, Bioinform..
[5] Jacob E. Goodman,et al. Proof of a conjecture of Burr, Grünbaum, and Sloane , 1980, Discret. Math..
[6] Rainer Wetzel,et al. Zur Visualisierung abstrakter Ähnlichkeitsbeziehungen , 1995 .
[7] D. Huson,et al. Application of phylogenetic networks in evolutionary studies. , 2006, Molecular biology and evolution.
[8] Stefan Felsner,et al. Sweeps, arrangements and signotopes , 2001, Discret. Appl. Math..
[9] John Hershberger,et al. Sweeping arrangements of curves , 1989, SCG '89.
[10] Richard Pollack,et al. On the Combinatorial Classification of Nondegenerate Configurations in the Plane , 1980, J. Comb. Theory, Ser. A.
[11] Sandi Klavzar,et al. Partial Cubes and Crossing Graphs , 2002, SIAM J. Discret. Math..
[12] Binh T. Nguyen,et al. Constructing and Drawing Regular Planar Split Networks , 2012, IEEE/ACM Transactions on Computational Biology and Bioinformatics.
[13] Trevor Hastie,et al. The Elements of Statistical Learning , 2001 .
[14] David Eppstein. Algorithms for Drawing Media , 2004, Graph Drawing.
[15] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[16] A. Dress,et al. A canonical decomposition theory for metrics on a finite set , 1992 .
[17] Gnter M. Ziegler,et al. Zonotopal Tilings and the Bohne-Dress Theorem , 1993 .
[18] Jean-Pierre Barthélemy,et al. From copair hypergraphs to median graphs with latent vertices , 1989, Discret. Math..
[19] Keiichi Handa. A Characterization of Oriented Matroids in Terms of Topes , 1990, Eur. J. Comb..
[20] Bernd Sturmfels,et al. Oriented Matroids: Notation , 1999 .
[21] Falk Tschirschnitz. Testing extendability for partial chirotopes is np-complete , 2001, CCCG.
[22] P. Buneman. The Recovery of Trees from Measures of Dissimilarity , 1971 .
[23] Richard Pollack,et al. A theorem of ordered duality , 1982 .
[24] Emo Welzl,et al. Vapnik-Chervonenkis dimension and (pseudo-)hyperplane arrangements , 1994, Discret. Comput. Geom..
[25] Kristoffer Forslund,et al. QNet: an agglomerative method for the construction of phylogenetic networks from weighted quartets. , 2006, Molecular biology and evolution.
[26] David Bryant,et al. Linearly independent split systems , 2007, Eur. J. Comb..
[27] V. Moulton,et al. Neighbor-net: an agglomerative method for the construction of phylogenetic networks. , 2002, Molecular biology and evolution.