When Can Splits be Drawn in the Plane?

Split networks are a popular tool for the analysis and visualization of complex evolutionary histories. Every collection of splits (bipartitions) of a finite set can be represented by a split network. Here we characterize which collection of splits can be represented using a planar split network. Our main theorem links these collections of splits with oriented matroids and arrangements of lines separating points in the plane. As a consequence of our main theorem, we establish a particularly simple characterization of maximal collections of these splits.

[1]  Komei Fukuda,et al.  Antipodal graphs and oriented matroids , 1993, Discret. Math..

[2]  D. Djoković Distance-preserving subgraphs of hypercubes , 1973 .

[3]  T. Zaslavsky Facing Up to Arrangements: Face-Count Formulas for Partitions of Space by Hyperplanes , 1975 .

[4]  Daniel H. Huson,et al.  SplitsTree: analyzing and visualizing evolutionary data , 1998, Bioinform..

[5]  Jacob E. Goodman,et al.  Proof of a conjecture of Burr, Grünbaum, and Sloane , 1980, Discret. Math..

[6]  Rainer Wetzel,et al.  Zur Visualisierung abstrakter Ähnlichkeitsbeziehungen , 1995 .

[7]  D. Huson,et al.  Application of phylogenetic networks in evolutionary studies. , 2006, Molecular biology and evolution.

[8]  Stefan Felsner,et al.  Sweeps, arrangements and signotopes , 2001, Discret. Appl. Math..

[9]  John Hershberger,et al.  Sweeping arrangements of curves , 1989, SCG '89.

[10]  Richard Pollack,et al.  On the Combinatorial Classification of Nondegenerate Configurations in the Plane , 1980, J. Comb. Theory, Ser. A.

[11]  Sandi Klavzar,et al.  Partial Cubes and Crossing Graphs , 2002, SIAM J. Discret. Math..

[12]  Binh T. Nguyen,et al.  Constructing and Drawing Regular Planar Split Networks , 2012, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[13]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[14]  David Eppstein Algorithms for Drawing Media , 2004, Graph Drawing.

[15]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[16]  A. Dress,et al.  A canonical decomposition theory for metrics on a finite set , 1992 .

[17]  Gnter M. Ziegler,et al.  Zonotopal Tilings and the Bohne-Dress Theorem , 1993 .

[18]  Jean-Pierre Barthélemy,et al.  From copair hypergraphs to median graphs with latent vertices , 1989, Discret. Math..

[19]  Keiichi Handa A Characterization of Oriented Matroids in Terms of Topes , 1990, Eur. J. Comb..

[20]  Bernd Sturmfels,et al.  Oriented Matroids: Notation , 1999 .

[21]  Falk Tschirschnitz Testing extendability for partial chirotopes is np-complete , 2001, CCCG.

[22]  P. Buneman The Recovery of Trees from Measures of Dissimilarity , 1971 .

[23]  Richard Pollack,et al.  A theorem of ordered duality , 1982 .

[24]  Emo Welzl,et al.  Vapnik-Chervonenkis dimension and (pseudo-)hyperplane arrangements , 1994, Discret. Comput. Geom..

[25]  Kristoffer Forslund,et al.  QNet: an agglomerative method for the construction of phylogenetic networks from weighted quartets. , 2006, Molecular biology and evolution.

[26]  David Bryant,et al.  Linearly independent split systems , 2007, Eur. J. Comb..

[27]  V. Moulton,et al.  Neighbor-net: an agglomerative method for the construction of phylogenetic networks. , 2002, Molecular biology and evolution.