A proposal for a standardised protocol to barcode all land plants
暂无分享,去创建一个
Mark W. Chase | Kenneth M. Cameron | Ole Seberg | Michael Wilkinson | Gitte Petersen | Niklas Pedersen | Peter M. Hollingsworth | M. Chase | G. Petersen | O. Seberg | P. Hollingsworth | Michael Wilkinson | R. Cowan | C. Berg | S. Madriñán | Tina Jørgsensen | K. Cameron | M. Carine | N. Pedersen | T. Hedderson | F. Conrad | G. Salazar | J. Richardson | M. Hollingsworth | T. Barraclough | L. J. Kelly | Terry A. Hedderson | James E. Richardson | Robyn S. Cowan | Cássio van den Berg | Ferozah Conrad | Michelle L. Hollingsworth | Laura J. Kelly | Santiago Madriñán | Gerardo A. Salazar | Tina Jørgsensen | Mark A. Carine | Timothy G. Barraclough
[1] A. Fazekas,et al. DNA barcoding in land plants: evaluation of rbcL in a multigene tiered approach , 2006 .
[2] F. Bakker,et al. DNA sequence evolution in fast evolving mitochondrial DNA nad1 exons in Geraniaceae and Plantaginaceae , 2006 .
[3] Antony V. Cox,et al. Molecular systematics, GISH and the origin of hybrid taxa in Nicotiana (Solanaceae). , 2003, Annals of botany.
[4] Jeffrey P. Mower,et al. Multiple major increases and decreases in mitochondrial substitution rates in the plant family Geraniaceae , 2005, BMC Evolutionary Biology.
[5] D. Janzen,et al. Use of DNA barcodes to identify flowering plants. , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[6] W. M. Whitten,et al. A PHYLOGENETIC ANALYSIS OF LAELIINAE (ORCHIDACEAE) BASED ON SEQUENCE DATA FROM INTERNAL TRANSCRIBED SPACERS (ITS) OF NUCLEAR RIBOSOMAL DNA 1 , 2000 .
[7] B. G. Baldwin. Phylogenetic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: an example from the compositae. , 1992, Molecular phylogenetics and evolution.
[8] Chung-Yen Lin,et al. The chloroplast genome of Phalaenopsis aphrodite (Orchidaceae): comparative analysis of evolutionary rate with that of grasses and its phylogenetic implications. , 2006, Molecular biology and evolution.
[9] Thierry Vermat,et al. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding , 2006, Nucleic acids research.
[10] J. Shaw,et al. The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. , 2005, American journal of botany.
[11] P. Hebert,et al. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.
[12] M. Chase,et al. Phylogenetics of South American Asclepiadoideae (Apocynaceae) , 2006 .
[13] Yangrae Cho,et al. Dynamic evolution of plant mitochondrial genomes: mobile genes and introns and highly variable mutation rates. , 2000, Proceedings of the National Academy of Sciences of the United States of America.
[14] Joey Shaw,et al. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. , 2007, American journal of botany.
[15] Jeffrey D. Palmer,et al. Mitochondrial DNA in Plant Systematics: Applications and Limitations , 1992 .
[16] J. Wendel,et al. Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). , 1995, Proceedings of the National Academy of Sciences of the United States of America.
[17] Nicolas Salamin,et al. Land plants and DNA barcodes: short-term and long-term goals , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.
[18] Jeremy R. deWaard,et al. Biological identifications through DNA barcodes , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.