Discrete layer hydroforming of three-layered tubes

Abstract Discrete layer forming proposed in this study is a hydroforming process which can selectively deform the outer tube to a desired shape without any deformation of the inner tube by piercing small holes in the inner tube. A three-layered tube is assembled from inner, middle, and outer tubes, from either similar or dissimilar materials, and deforms simultaneously when internal pressure and axial feed are applied to the tube. In special working environments, multi-layered tubes with combined material properties, high strength, and corrosion resistance are required to satisfy conflicting performance requirements. The feasibility of proposed discrete layer forming process of three-layered tube was evaluated by a tube hydroforming experiment and process analysis was performed. An optimal loading path to prevent wrinkling around holes was developed by an analytical model and was experimentally verified. The results show that the proposed discrete layer forming process can be successfully applicable to hollow forming of non-axisymmetric multilayered tubes for structural purposes.