Effects of defect density, minority carrier lifetime, doping density, and absorber-layer thickness in CIGS and CZTSSe thin-film solar cells

Abstract. Detailed optoelectronic simulations of thin-film photovoltaic solar cells (PVSCs) with a homogeneous photon-absorber layer made of with CIGS or CZTSSe were carried out to determine the effects of defect density, minority carrier lifetime, doping density, composition (i.e., bandgap energy), and absorber-layer thickness on solar-cell performance. The transfer-matrix method was used to calculate the electron-hole-pair (EHP) generation rate, and a one-dimensional drift-diffusion model was used to determine the EHP recombination rate, open-circuit voltage, short-circuit current density, power-conversion efficiency, and fill factor. Through a comparison of limited experimental data and simulation results, we formulated expressions for the defect density in terms of the composition parameter of either CIGS or CZTSSe. All performance parameters of the thin-films PVSCs were thereby shown to be obtainable from the bulk material-response parameters of the semiconductor, with the influence of surface defects being small enough to be ignored. Furthermore, unrealistic values of the defect density (equivalently, minority carrier lifetime) will deliver unreliable predictions of the solar-cell performance. The derived expressions should guide fellow researchers in simulating the graded-bandgap and quantum-well-based PVSCs.

[1]  P. Menon,et al.  Determinants Affecting the Performance of CZTSSe: Antisite Defects and Multiple Quantum Confinement for Photon-Sensitive Devices , 2022, IEEE Sensors Journal.

[2]  F. Tchangnwa Nya,et al.  Improving the absorption spectrum and performance of CIGS solar cells by optimizing the stepped band gap profile of the multilayer absorber , 2022, Solar Energy.

[3]  Naheem Olakunle Adesina,et al.  Analytical modeling and design optimization of a graphene/n-GaAs Schottky junction solar cell , 2022, Journal of Photonics for Energy.

[4]  M. Zhao,et al.  The impact of Ga and S concentration and gradient in Cu(In,Ga)(Se,S)2 solar cells , 2022, Optical Materials.

[5]  F. Zabihi,et al.  Influence of the anode buffer layer materials and the light radiation power on the efficiency of a planar p-i-n perovskite solar cell: theory and simulation , 2022, Journal of Photonics for Energy.

[6]  S. Routray,et al.  Exploiting High-Density Earth-Abundant Kesterite Quantum Wells for Next-Generation PV Technology , 2021, IEEE Transactions on Electron Devices.

[7]  Akhlesh Lakhtakia,et al.  Theory of Graded-Bandgap Thin-Film Solar Cells , 2021, Synthesis Lectures on Electromagnetics.

[8]  Jielei Tu,et al.  Design and analysis of broadband antireflective coating for monolithic perovskite/silicon tandem solar cell , 2021 .

[9]  Abdollah Abbasi,et al.  Improvement of CIGS solar cell efficiency with graded bandgap absorber layer , 2021, Journal of Materials Science: Materials in Electronics.

[10]  Sina Azizifar,et al.  Modeling of CIGS single–junction solar cell using multiple quantum well structure with enhanced efficiency , 2020, Optical and Quantum Electronics.

[11]  A. Cattoni,et al.  Progress and prospects for ultrathin solar cells , 2020, Nature Energy.

[12]  J. Popp,et al.  The Bouguer‐Beer‐Lambert Law: Shining Light on the Obscure , 2020, Chemphyschem : a European journal of chemical physics and physical chemistry.

[13]  S. Dehghani,et al.  Theoretical study of graded bandgap CZTSSe solar cells with two absorber layers , 2020 .

[14]  A. Lakhtakia,et al.  The Transfer-Matrix Method in Electromagnetics and Optics , 2020, Synthesis Lectures on Electromagnetics.

[15]  Abdollah Eskandarian,et al.  Performance enhancement of ultrathin graded Cu(InGa)Se2 solar cells through modification of the basic structure and adding antireflective layers , 2020, Journal of Photonics for Energy.

[16]  Tom H. Anderson,et al.  Efficiency enhancement of ultrathin CIGS solar cells by optimal bandgap grading. , 2019, Applied optics.

[17]  Akhlesh Lakhtakia,et al.  Coupled Optoelectronic Simulation and Optimization of Thin-Film Photovoltaic Solar Cells , 2019, J. Comput. Phys..

[18]  Akhlesh Lakhtakia,et al.  Optimization of light trapping in ultrathin nonhomogeneous CuIn1-ξGaξSe2 solar cell backed by 1D periodically corrugated backreflector , 2018, NanoScience + Engineering.

[19]  A. Welle,et al.  Band-gap tuning of Cu2ZnSn(S,Se)4 solar cell absorbers via defined incorporation of sulphur based on a post-sulphurization process , 2018, Solar Energy Materials and Solar Cells.

[20]  M. Green,et al.  Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment , 2018, Nature Energy.

[21]  Yoshiaki Nakano,et al.  Material challenges for solar cells in the twenty-first century: directions in emerging technologies , 2018, Science and technology of advanced materials.

[22]  S. Mohammadnejad,et al.  CZTSSe solar cell efficiency improvement using a new band-gap grading model in absorber layer , 2017 .

[23]  M. Aillerie,et al.  Optimization by simulation of the nature of the buffer, the gap profile of the absorber and the thickness of the various layers in CZTSSe solar cells , 2017 .

[24]  P. Lalanne,et al.  Light Trapping in Ultrathin CIGS Solar Cells with Nanostructured Back Mirrors , 2017, IEEE Journal of Photovoltaics.

[25]  Martina Schmid,et al.  Review on light management by nanostructures in chalcopyrite solar cells , 2017 .

[26]  Matthias Karg,et al.  Plasmonic nanomeshes: their ambivalent role as transparent electrodes in organic solar cells , 2017, Scientific Reports.

[27]  O. Vigil-Galan,et al.  The role of buffer/kesterite interface recombination and minority carrier lifetime on kesterite thin film solar cells , 2016 .

[28]  Philip Jackson,et al.  Effects of heavy alkali elements in Cu(In,Ga)Se2 solar cells with efficiencies up to 22.6% , 2016 .

[29]  C. Jeon,et al.  A band-gap-graded CZTSSe solar cell with 12.3% efficiency , 2016 .

[30]  K. Kim,et al.  Quantitative determination of optical and recombination losses in thin-film photovoltaic devices based on external quantum efficiency analysis , 2016, 1604.04491.

[31]  A. Polman,et al.  Photovoltaic materials: Present efficiencies and future challenges , 2016, Science.

[32]  K. Balachander,et al.  Compositional grading of CZTSSe alloy using exponential and uniform grading laws in SCAPS-ID simulation , 2016 .

[33]  S. Adachi Earth-Abundant Materials for Solar Cells: Cu2-II-IV-VI4 Semiconductors , 2015 .

[34]  Martina Schmid,et al.  Light Coupling and Trapping in Ultrathin Cu(In,Ga)Se2 Solar Cells Using Dielectric Scattering Patterns. , 2015, ACS nano.

[35]  O. Vigil-Galan,et al.  Loss mechanisms influence on Cu2ZnSnS4/CdS-based thin film solar cell performance , 2015 .

[36]  S. Niki,et al.  Optical constants of Cu(In, Ga)Se2 for arbitrary Cu and Ga compositions , 2015 .

[37]  O. Gunawan,et al.  Cu2ZnSnSe4 Thin‐Film Solar Cells by Thermal Co‐evaporation with 11.6% Efficiency and Improved Minority Carrier Diffusion Length , 2015 .

[38]  Suhuai Wei,et al.  Impact of bulk properties and local secondary phases on the Cu 2 (Zn,Sn)Se 4 solar cells open-circuit voltage , 2015 .

[39]  J. Olsson,et al.  Optimizing Ga-profiles for highly efficient Cu(In, Ga)Se2 thin film solar cells in simple and complex defect models , 2014 .

[40]  D. Mitzi,et al.  Semi-empirical device model for Cu2ZnSn(S,Se)4 solar cells , 2014 .

[41]  D. Flandre,et al.  Employing Si solar cell technology to increase efficiency of ultra-thin Cu(In,Ga)Se2 solar cells , 2014, Progress in photovoltaics.

[42]  T. Minemoto,et al.  Simulation of optimum band-gap grading profile of Cu2ZnSn(S,Se)4 solar cells with different optical and defect properties , 2014 .

[43]  Wei Wang,et al.  Device Characteristics of CZTSSe Thin‐Film Solar Cells with 12.6% Efficiency , 2014 .

[44]  J. Y. Kim,et al.  Band-gap-graded Cu2ZnSn(S1-x,Sex)4 Solar Cells Fabricated by an Ethanol-based, Particulate Precursor Ink Route , 2013, Scientific Reports.

[45]  Rommel Noufi,et al.  The state and future prospects of kesterite photovoltaics , 2013 .

[46]  Tayfun Gokmen,et al.  Photoluminescence characterization of a high-efficiency Cu2ZnSnS4 device , 2013 .

[47]  Tayfun Gokmen,et al.  Band tailing and efficiency limitation in kesterite solar cells , 2013 .

[48]  Suhuai Wei,et al.  Indications of short minority-carrier lifetime in kesterite solar cells , 2013 .

[49]  Mark Winskel,et al.  Implications for CdTe and CIGS technologies production costs of indium and tellurium scarcity , 2012 .

[50]  G. Kiriakidis,et al.  Characterization and Gas-sensing Performance of Spray Pyrolysed In 2 O 3 Thin Films: Substrate Temperature Effect , 2012 .

[51]  Seeram Ramakrishna,et al.  Anti-reflective coatings: A critical, in-depth review , 2011 .

[52]  Supratik Guha,et al.  The path towards a high-performance solution-processed kesterite solar cell ☆ , 2011 .

[53]  David W. Lane,et al.  Optical Design and Fabrication of Fully Sputtered CdTe/CdS Solar Cells , 2011 .

[54]  Peter Monk,et al.  The Linear Sampling Method in Inverse Electromagnetic Scattering , 2010 .

[55]  N. Ehrmann,et al.  Ellipsometric studies on ZnO:Al thin films: Refinement of dispersion theories , 2010 .

[56]  R. Feist,et al.  Structure optimization for a high efficiency CIGS solar cell , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[57]  David B Mitzi,et al.  High‐Efficiency Solar Cell with Earth‐Abundant Liquid‐Processed Absorber , 2010, Advanced materials.

[58]  J. Sites,et al.  Band-gap grading in Cu(In,Ga)Se2 solar cells , 2005 .

[59]  David L. King,et al.  Solar cell efficiency tables (Version 60) , 1997 .

[60]  M. J. Dodge,et al.  Refractive properties of magnesium fluoride. , 1984, Applied optics.

[61]  D. W. Berreman,et al.  Optics in Stratified and Anisotropic Media: 4×4-Matrix Formulation , 1972 .

[62]  BouguerPierre,et al.  Essai d'optique sur la gradation de la lumière , 1922, Nature.

[63]  J. Olsson,et al.  Combining strong interface recombination with bandgap narrowing and short diffusion length in Cu2ZnSnS4 device modeling , 2016 .

[64]  L. Beneš,et al.  Pulsed laser deposited alumina thin films , 2016 .

[65]  Transparent Conductive Oxide Thin Films , 2015 .

[66]  Rommel Noufi,et al.  Improved Performance in CuInSe2 and Surface-Modified CuGaSe2 Solar Cells , 2005 .

[67]  Oscar D. Crisalle,et al.  Device modeling and simulation of the performance of Cu(In1−x,Gax)Se2 solar cells , 2004 .

[68]  J. Nelson The physics of solar cells , 2003 .

[69]  M. Querry,et al.  Optical constants of minerals and other materials from the millimeter to the ultraviolet , 1987 .

[70]  Beer Bestimmung der Absorption des rothen Lichts in farbigen Flüssigkeiten , 1852 .