C. elegans CED-12 acts in the conserved crkII/DOCK180/Rac pathway to control cell migration and cell corpse engulfment.

[1]  M. Hengartner,et al.  CED-12/ELMO, a Novel Member of the CrkII/Dock180/Rac Pathway, Is Required for Phagocytosis and Cell Migration , 2001, Cell.

[2]  Zheng Zhou,et al.  CED-1 Is a Transmembrane Receptor that Mediates Cell Corpse Engulfment in C. elegans , 2001, Cell.

[3]  Matthew L. Albert,et al.  αvβ5 integrin recruits the CrkII–Dock180–Rac1 complex for phagocytosis of apoptotic cells , 2000, Nature Cell Biology.

[4]  M. Driscoll,et al.  A common set of engulfment genes mediates removal of both apoptotic and necrotic cell corpses in C. elegans , 2000, Nature Cell Biology.

[5]  P. Chavrier,et al.  Function of Rho family proteins in actin dynamics during phagocytosis and engulfment , 2000, Nature Cell Biology.

[6]  J. Pfeilschifter,et al.  New insights into the mechanism for clearance of apoptotic cells. , 2000, BioEssays : news and reviews in molecular, cellular and developmental biology.

[7]  P. Taylor,et al.  A Hierarchical Role for Classical Pathway Complement Proteins in the Clearance of Apoptotic Cells in Vivo , 2000, The Journal of experimental medicine.

[8]  Yannick Hamon,et al.  ABC1 promotes engulfment of apoptotic cells and transbilayer redistribution of phosphatidylserine. , 2000, Nature Cell Biology.

[9]  V. Fadok,et al.  A receptor for phosphatidylserine-specific clearance of apoptotic cells , 2000, Nature.

[10]  M. Hengartner,et al.  Identification and Characterization of a Dimerization Domain in CED-6, an Adapter Protein Involved in Engulfment of Apoptotic Cells* , 2000, The Journal of Biological Chemistry.

[11]  H. Horvitz,et al.  CED-2/CrkII and CED-10/Rac control phagocytosis and cell migration in Caenorhabditis elegans , 2000, Nature Cell Biology.

[12]  H. Horvitz,et al.  NUC-1, a caenorhabditis elegans DNase II homolog, functions in an intermediate step of DNA degradation during apoptosis. , 2000, Genes & development.

[13]  C. Gregory,et al.  CD14-dependent clearance of apoptotic cells: relevance to the immune system. , 2000, Current opinion in immunology.

[14]  M. Hengartner,et al.  Human CED-6 encodes a functional homologue of the Caenorhabditis elegans engulfment protein CED-6 , 1999, Current Biology.

[15]  R. Klemke,et al.  Regulation of Cell Contraction and Membrane Ruffling by Distinct Signals in Migratory Cells , 1999, The Journal of cell biology.

[16]  P. Heitzler,et al.  Requirement for croquemort in phagocytosis of apoptotic cells in Drosophila. , 1999, Science.

[17]  H. Horvitz,et al.  Genetic control of programmed cell death in the nematode Caenorhabditis elegans. , 1999, Cancer research.

[18]  H. Horvitz,et al.  Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline. , 1999, Development.

[19]  Andrew Smith Genome sequence of the nematode C-elegans: A platform for investigating biology , 1998 .

[20]  V. Fadok,et al.  CD36 is required for phagocytosis of apoptotic cells by human macrophages that use either a phosphatidylserine receptor or the vitronectin receptor (alpha v beta 3). , 1998, Journal of immunology.

[21]  J. Settleman,et al.  Myoblast city, the Drosophila homolog of DOCK180/CED-5, is required in a Rac signaling pathway utilized for multiple developmental processes. , 1998, Genes & development.

[22]  M. Matsuda,et al.  Activation of Rac1 by a Crk SH3-binding protein, DOCK180. , 1998, Genes & development.

[23]  T. Kita,et al.  Lectin-like oxidized low-density lipoprotein receptor 1 mediates phagocytosis of aged/apoptotic cells in endothelial cells. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Min Han,et al.  Caenorhabditis elegans SUR-5, a Novel but Conserved Protein, Negatively Regulates LET-60 Ras Activity during Vulval Induction , 1998, Molecular and Cellular Biology.

[25]  V. Fadok,et al.  The role of phosphatidylserine in recognition of apoptotic cells by phagocytes , 1998, Cell Death and Differentiation.

[26]  H. Horvitz,et al.  The C. elegans Cell Corpse Engulfment Gene ced-7 Encodes a Protein Similar to ABC Transporters , 1998, Cell.

[27]  M. Hengartner,et al.  Candidate Adaptor Protein CED-6 Promotes the Engulfment of Apoptotic Cells in C. elegans , 1998, Cell.

[28]  Pier Paolo Pandolfi,et al.  Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies , 1998, Nature Genetics.

[29]  A. Devitt,et al.  Human CD14 mediates recognition and phagocytosis of apoptotic cells , 1998, Nature.

[30]  H. Horvitz,et al.  C. elegans phagocytosis and cell-migration protein CED-5 is similar to human DOCK180 , 1998, Nature.

[31]  T. Pawson,et al.  UNC-73 Activates the Rac GTPase and Is Required for Cell and Growth Cone Migrations in C. elegans , 1998, Cell.

[32]  M. Albert,et al.  Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs , 1998, Nature.

[33]  K. Anderson,et al.  Regulated nuclear import of Rel proteins in the Drosophila immune response , 1998, Nature.

[34]  G. Garriga,et al.  Neuronal Migrations and Axon Fasciculation Are Disrupted in ina-1 Integrin Mutants , 1997, Neuron.

[35]  P. De Camilli,et al.  The SH3 Domain of Amphiphysin Binds the Proline-rich Domain of Dynamin at a Single Site That Defines a New SH3 Binding Consensus Sequence* , 1997, The Journal of Biological Chemistry.

[36]  M. Raff,et al.  Programmed Cell Death in Animal Development , 1997, Cell.

[37]  L. Lim,et al.  The Caenorhabditis elegans p21-activated Kinase (CePAK) Colocalizes with CeRac1 and CDC42Ce at Hypodermal Cell Boundaries during Embryo Elongation* , 1996, The Journal of Biological Chemistry.

[38]  M. Vidal,et al.  Reverse two-hybrid and one-hybrid systems to detect dissociation of protein-protein and DNA-protein interactions. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[39]  C. Haslett,et al.  Human monocyte-derived macrophage phagocytosis of senescent eosinophils undergoing apoptosis. Mediation by alpha v beta 3/CD36/thrombospondin recognition mechanism and lack of phlogistic response. , 1996, The American journal of pathology.

[40]  M. Lagueux,et al.  Croquemort, a novel Drosophila hemocyte/macrophage receptor that recognizes apoptotic cells. , 1996, Immunity.

[41]  Wu Zz,et al.  [Genetic control of programmed cell death]. , 1996, Sheng li ke xue jin zhan [Progress in physiology].

[42]  M. Shibuya,et al.  DOCK180, a major CRK-binding protein, alters cell morphology upon translocation to the cell membrane , 1996, Molecular and cellular biology.

[43]  M. Luciani,et al.  The ATP binding cassette transporter ABC1, is required for the engulfment of corpses generated by apoptotic cell death. , 1996, The EMBO journal.

[44]  C. Kenyon,et al.  Characterization of beta pat-3 heterodimers, a family of essential integrin receptors in C. elegans , 1995, The Journal of cell biology.

[45]  R. Ellis,et al.  The fog-3 gene and regulation of cell fate in the germ line of Caenorhabditis elegans. , 1995, Genetics.

[46]  J Kimble,et al.  lag-2 may encode a signaling ligand for the GLP-1 and LIN-12 receptors of C. elegans. , 1994, Development.

[47]  Hongtao Yu,et al.  Structural basis for the binding of proline-rich peptides to SH3 domains , 1994, Cell.

[48]  R. Waterston,et al.  Genes critical for muscle development and function in Caenorhabditis elegans identified through lethal mutations , 1994, The Journal of cell biology.

[49]  J. Spieth,et al.  Operons in C. elegans: Polycistronic mRNA precursors are processed by trans-splicing of SL2 to downstream coding regions , 1993, Cell.

[50]  P Cicchetti,et al.  Identification of a ten-amino acid proline-rich SH3 binding site. , 1993, Science.

[51]  L. Lim,et al.  A new member of the ras superfamily, the rac1 homologue from Caenorhabditis elegans. Cloning and sequence analysis of cDNA, pattern of developmental expression, and biochemical characterization of the protein. , 1993, The Journal of biological chemistry.

[52]  J Savill,et al.  Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. , 1992, The Journal of clinical investigation.

[53]  D. Dixon,et al.  Temporal and spatial expression patterns of the small heat shock (hsp16) genes in transgenic Caenorhabditis elegans. , 1992, Molecular biology of the cell.

[54]  V. Ambros,et al.  Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. , 1991, The EMBO journal.

[55]  Horvitz,et al.  Genes required for the engulfment of cell corpses during programmed cell death in Caenorhabditis elegans. , 1991, Genetics.

[56]  N. Hogg,et al.  Macrophage vitronectin receptor, CD36, and thrombospondin cooperate in recognition of neutrophils undergoing programmed cell death. , 1991, Chest.

[57]  N. Hogg,et al.  Vitronectin receptor-mediated phagocytosis of cells undergoing apoptosis , 1990, Nature.

[58]  N. Munakata [Genetics of Caenorhabditis elegans]. , 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[59]  C. Kenyon,et al.  The nematode Caenorhabditis elegans. , 1988, Science.

[60]  D. Hall,et al.  Genetics of cell and axon migrations in Caenorhabditis elegans. , 1987, Development.

[61]  A. Coulson,et al.  Toward a physical map of the genome of the nematode Caenorhabditis elegans. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[62]  H. Horvitz,et al.  Genetic control of programmed cell death in the nematode C. elegans , 1986, Cell.

[63]  A. Wyllie,et al.  Macrophage recognition of cells undergoing programmed cell death (apoptosis). , 1985, Immunology.

[64]  J. Sulston,et al.  The embryonic cell lineage of the nematode Caenorhabditis elegans. , 1983, Developmental biology.

[65]  J. Sulston,et al.  Mutations affecting programmed cell deaths in the nematode Caenorhabditis elegans. , 1983, Science.

[66]  A. M. Robertson,et al.  Morphology of programmed cell death in the ventral nerve cord of Caenorhabditis elegans larvae , 1982 .

[67]  J Kimble,et al.  Alterations in cell lineage following laser ablation of cells in the somatic gonad of Caenorhabditis elegans. , 1981, Developmental biology.

[68]  D. Hirsh,et al.  The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. , 1979, Developmental biology.

[69]  J. Sulston,et al.  Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. , 1977, Developmental biology.

[70]  J. N. Thomson,et al.  The pharynx of Caenorhabditis elegans. , 1976, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[71]  J. Sulston Post-embryonic development in the ventral cord of Caenorhabditis elegans. , 1976, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[72]  L. Wang,et al.  [Genetic control of programmed cell death]. , 1996, Sheng li ke xue jin zhan [Progress in physiology].

[73]  H. Horvitz,et al.  Mechanisms and functions of cell death. , 1991, Annual review of cell biology.