Approximation of eigenvalues in mixed form, Discrete Compactness Property, and application to hp mixed finite elements

Abstract In this paper we discuss the Discrete Compactness Property (DCP) which is a well-known tool for the analysis of finite element approximations of Maxwell’s eigenvalues. We restrict our presentation to Maxwell’s eigenvalues, but the theory applies to more general situations and in particular to mixed finite element schemes that can be written in the framework of de Rham complex and which enjoy suitable compactness properties. We investigate the relationships between DCP and standard mixed conditions for the good approximation of eigenvalues. As a consequence of our theory, the convergence analysis of the rectangular hp version of Raviart–Thomas finite elements for the approximation of Laplace eigenvalues is presented as a corollary of the analogous result for hp edge elements applied to the approximation of Maxwell’s eigenvalues [D. Boffi, M. Costabel, M. Dauge, L. Demkowicz, Discrete compactness for the hp version of rectangular edge finite elements, SIAM J. Numer. Anal. 44 (3) (2006) 979–1004].

[1]  Peter Monk,et al.  Discrete compactness and the approximation of Maxwell's equations in R3 , 2001, Math. Comput..

[2]  Leszek F. Demkowicz,et al.  Full-wave analysis of dielectric waveguides at a given frequency , 2003, Math. Comput..

[3]  L. Demkowicz,et al.  Modeling of electromagnetic absorption/scattering problems using hp-adaptive finite elements , 1998 .

[4]  Daniele Boffi,et al.  Fortin operator and discrete compactness for edge elements , 2000, Numerische Mathematik.

[5]  Willard Miller,et al.  The IMA volumes in mathematics and its applications , 1986 .

[6]  F. Kikuchi,et al.  Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism , 1987 .

[7]  M. Costabel,et al.  Maxwell and Lamé eigenvalues on polyhedra , 1999 .

[8]  D. Boffi,et al.  Computational Models of Electromagnetic Resonators: Analysis of Edge Element Approximation , 1999 .

[9]  D. Arnold Differential complexes and numerical stability , 2002, math/0212391.

[10]  Daniele Boffi Compatible Discretizations for Eigenvalue Problems , 2006 .

[11]  D. Arnold Differential complexes and stability of finite element methods. I. The de Rham complex , 2006 .

[12]  Daniel Boffi,et al.  A note on the deRham complex and a discrete compactness property , 1999, Appl. Math. Lett..

[13]  Jean E. Roberts,et al.  Global estimates for mixed methods for second order elliptic equations , 1985 .

[14]  J. Nédélec A new family of mixed finite elements in ℝ3 , 1986 .

[15]  J. Osborn Spectral approximation for compact operators , 1975 .

[16]  P. Werner,et al.  A local compactness theorem for Maxwell's equations , 1980 .

[17]  Gianni Gilardi,et al.  Magnetostatic and Electrostatic Problems in Inhomogeneous Anisotropic Media with Irregular Boundary and Mixed Boundary Conditions , 1997 .

[18]  Joseph E. Pasciak,et al.  A least-squares approximation method for the time-harmonic Maxwell equations , 2005, J. Num. Math..

[19]  Jean-Claude Nédélec,et al.  Éléments finis mixtes incompressibles pour l'équation de Stokes dans ℝ3 , 1982 .

[20]  F. Kikuchi On a discrete compactness property for the Nedelec finite elements , 1989 .

[21]  A. Bermúdez,et al.  Finite element vibration analysis of fluid-solid systems without spurious modes , 1995 .

[22]  P. Anselone,et al.  Collectively Compact Operator Approximation Theory and Applications to Integral Equations , 1971 .

[23]  Daniele Boffi,et al.  Approximation of grad-div operator in non-convex domains , 1999 .

[24]  Martin Costabel,et al.  Weighted regularization of Maxwell equations in polyhedral domains , 2002, Numerische Mathematik.

[25]  Daniele Boffi,et al.  On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form , 2000, Math. Comput..

[26]  L. Demkowicz,et al.  hp-adaptive finite elements in electromagnetics , 1999 .

[27]  Martin Costabel,et al.  Discrete Compactness for the hp Version of Rectangular Edge Finite Elements , 2006, SIAM J. Numer. Anal..

[28]  Friedrich Stummel,et al.  Diskrete Konvergenz linearer Operatoren. I , 1970 .

[29]  F. Brezzi,et al.  On the convergence of eigenvalues for mixed formulations , 1997 .

[30]  Salvatore Caorsi,et al.  Mathematical Modelling and Numerical Analysis Spurious-free Approximations of Electromagnetic Eigenproblems by Means of Nedelec-type Elements , 2022 .