Approximation of eigenvalues in mixed form, Discrete Compactness Property, and application to hp mixed finite elements
暂无分享,去创建一个
[1] Peter Monk,et al. Discrete compactness and the approximation of Maxwell's equations in R3 , 2001, Math. Comput..
[2] Leszek F. Demkowicz,et al. Full-wave analysis of dielectric waveguides at a given frequency , 2003, Math. Comput..
[3] L. Demkowicz,et al. Modeling of electromagnetic absorption/scattering problems using hp-adaptive finite elements , 1998 .
[4] Daniele Boffi,et al. Fortin operator and discrete compactness for edge elements , 2000, Numerische Mathematik.
[5] Willard Miller,et al. The IMA volumes in mathematics and its applications , 1986 .
[6] F. Kikuchi,et al. Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism , 1987 .
[7] M. Costabel,et al. Maxwell and Lamé eigenvalues on polyhedra , 1999 .
[8] D. Boffi,et al. Computational Models of Electromagnetic Resonators: Analysis of Edge Element Approximation , 1999 .
[9] D. Arnold. Differential complexes and numerical stability , 2002, math/0212391.
[10] Daniele Boffi. Compatible Discretizations for Eigenvalue Problems , 2006 .
[11] D. Arnold. Differential complexes and stability of finite element methods. I. The de Rham complex , 2006 .
[12] Daniel Boffi,et al. A note on the deRham complex and a discrete compactness property , 1999, Appl. Math. Lett..
[13] Jean E. Roberts,et al. Global estimates for mixed methods for second order elliptic equations , 1985 .
[14] J. Nédélec. A new family of mixed finite elements in ℝ3 , 1986 .
[15] J. Osborn. Spectral approximation for compact operators , 1975 .
[16] P. Werner,et al. A local compactness theorem for Maxwell's equations , 1980 .
[17] Gianni Gilardi,et al. Magnetostatic and Electrostatic Problems in Inhomogeneous Anisotropic Media with Irregular Boundary and Mixed Boundary Conditions , 1997 .
[18] Joseph E. Pasciak,et al. A least-squares approximation method for the time-harmonic Maxwell equations , 2005, J. Num. Math..
[19] Jean-Claude Nédélec,et al. Éléments finis mixtes incompressibles pour l'équation de Stokes dans ℝ3 , 1982 .
[20] F. Kikuchi. On a discrete compactness property for the Nedelec finite elements , 1989 .
[21] A. Bermúdez,et al. Finite element vibration analysis of fluid-solid systems without spurious modes , 1995 .
[22] P. Anselone,et al. Collectively Compact Operator Approximation Theory and Applications to Integral Equations , 1971 .
[23] Daniele Boffi,et al. Approximation of grad-div operator in non-convex domains , 1999 .
[24] Martin Costabel,et al. Weighted regularization of Maxwell equations in polyhedral domains , 2002, Numerische Mathematik.
[25] Daniele Boffi,et al. On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form , 2000, Math. Comput..
[26] L. Demkowicz,et al. hp-adaptive finite elements in electromagnetics , 1999 .
[27] Martin Costabel,et al. Discrete Compactness for the hp Version of Rectangular Edge Finite Elements , 2006, SIAM J. Numer. Anal..
[28] Friedrich Stummel,et al. Diskrete Konvergenz linearer Operatoren. I , 1970 .
[29] F. Brezzi,et al. On the convergence of eigenvalues for mixed formulations , 1997 .
[30] Salvatore Caorsi,et al. Mathematical Modelling and Numerical Analysis Spurious-free Approximations of Electromagnetic Eigenproblems by Means of Nedelec-type Elements , 2022 .