Well-tuned algorithms for the Team Orienteering Problem with Time Windows

The Team Orienteering Problem with Time Windows (TOPTW) is the extension of the Orienteering Problem (OP) where each node is limited by a predefined time window during which the service has to start. The objective of the TOPTW is to maximize the total collected score by visiting a set of nodes with a limited number of paths. We propose two algorithms, Iterated Local Search and a hybridization of Simulated Annealing and Iterated Local Search (SAILS), to solve the TOPTW. As indicated in multiple research works on algorithms for the OP and its variants, determining appropriate parameter values in a statistical way remains a challenge. We apply Design of Experiments, namely factorial experimental design, to screen and rank all the parameters thereby allowing us to focus on the parameter search space of the important parameters. The proposed algorithms are tested on benchmark TOPTW instances. We demonstrate that well-tuned ILS and SAILS lead to improvements in terms of the quality of the solutions. More precisely, we are able to improve 50 best known solution values on the available benchmark instances.

[1]  A. E. Eiben,et al.  Evolutionary Algorithm Parameters and Methods to Tune Them , 2012, Autonomous Search.

[2]  Giovanni Righini,et al.  Decremental state space relaxation strategies and initialization heuristics for solving the Orienteering Problem with Time Windows with dynamic programming , 2009, Comput. Oper. Res..

[3]  T. Tsiligirides,et al.  Heuristic Methods Applied to Orienteering , 1984 .

[4]  Andrew Lim,et al.  An iterative three-component heuristic for the team orienteering problem with time windows , 2014, Eur. J. Oper. Res..

[5]  Richard F. Hartl,et al.  Heuristics for the multi-period orienteering problem with multiple time windows , 2010, Comput. Oper. Res..

[6]  Marius M. Solomon,et al.  Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints , 1987, Oper. Res..

[7]  Zbigniew Michalewicz,et al.  Parameter Control in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[8]  R. Vohra,et al.  The Orienteering Problem , 1987 .

[9]  Selmer M. Johnson Generation of permutations by adjacent transposition , 1963 .

[10]  Dirk Van Oudheusden,et al.  The Multiconstraint Team Orienteering Problem with Multiple Time Windows , 2010, Transp. Sci..

[11]  Hoong Chuin Lau,et al.  An Iterated Local Search Algorithm for Solving the Orienteering Problem with Time Windows , 2015, EvoCOP.

[12]  Michel Gendreau,et al.  Handbook of Metaheuristics , 2010 .

[13]  Roberto Montemanni,et al.  An ant colony system for team orienteering problems with time windows , 2023, 2305.07305.

[14]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[15]  Helena Ramalhinho Dias Lourenço,et al.  Iterated Local Search , 2001, Handbook of Metaheuristics.

[16]  Dirk Van Oudheusden,et al.  The orienteering problem: A survey , 2011, Eur. J. Oper. Res..

[17]  Nacima Labadie,et al.  The Team Orienteering Problem with Time Windows: An LP-based Granular Variable Neighborhood Search , 2012, Eur. J. Oper. Res..

[18]  Shih-Wei Lin,et al.  A simulated annealing heuristic for the team orienteering problem with time windows , 2012, Eur. J. Oper. Res..

[19]  Dirk Van Oudheusden,et al.  Iterated local search for the team orienteering problem with time windows , 2009, Comput. Oper. Res..

[20]  Andrés L. Medaglia,et al.  Solving the Orienteering Problem with Time Windows via the Pulse Framework , 2015, Comput. Oper. Res..

[21]  Nacima Labadie,et al.  Hybridized evolutionary local search algorithm for the team orienteering problem with time windows , 2011, J. Heuristics.

[22]  Michel Gendreau,et al.  A tabu search heuristic for the undirected selective travelling salesman problem , 1998, Eur. J. Oper. Res..

[23]  Hoong Chuin Lau,et al.  SAILS: Hybrid algorithm for the Team Orienteering Problem with Time Windows , 2015 .

[24]  Manuel Laguna,et al.  Fine-Tuning of Algorithms Using Fractional Experimental Designs and Local Search , 2006, Oper. Res..

[25]  Lindawati,et al.  Fine-Tuning Algorithm Parameters Using the Design of Experiments Approach , 2011, LION.

[26]  Michel Gendreau,et al.  A tabu search heuristic for periodic and multi-depot vehicle routing problems , 1997, Networks.

[27]  Tunchan Cura,et al.  An artificial bee colony algorithm approach for the team orienteering problem with time windows , 2014, Comput. Ind. Eng..

[28]  R. Montemanni,et al.  An Enhanced Ant Colony System for the Team Orienteering Problem with Time Windows , 2011, 2011 International Symposium on Computer Science and Society.

[29]  Thomas Stützle,et al.  Parameter Adaptation in Ant Colony Optimization , 2012, Autonomous Search.

[30]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[31]  Hoong Chuin Lau,et al.  Orienteering Problem: A survey of recent variants, solution approaches and applications , 2016, Eur. J. Oper. Res..