Induced-charge electrokinetic phenomena

This chapter provides an introduction to a certain class of nonlinear electrokinetic phenomena, where the applied electric field acts on its own induced-charge in an electrolytic solution near a polarizable surface. Many applications are discussed, such as colloidal particle dynamics (induced-charge electrophoresis) and microfluidic mixing and pumping (induced-charge electro-osmosis), while emphasizing the basic physics of each phenomenon. A Standard Model for these situations is introduced and analyzed in simple cases. Similarities and differences are noted with other electrokinetic phenomena, such as classical linear (fixed-charge) electrokinetics in electrolytes and electrohydrodynamics in leaky dielectrics.

[1]  Howard A. Stone,et al.  ENGINEERING FLOWS IN SMALL DEVICES , 2004 .

[2]  I. Rubinstein,et al.  ELECTRO-OSMOTIC SLIP OF THE SECOND KIND AND INSTABILITY IN CONCENTRATION POLARIZATION AT ELECTRODIALYSIS MEMBRANES , 2001 .

[3]  V. Murtsovkin,et al.  Study of flows induced in the vicinity of conducting particles by an extenal electric field , 1992 .

[4]  R. P. Bell,et al.  Modern Electrochemistry , 1966, Nature.

[5]  J. Eijkel,et al.  A general model to describe the electrostatic potential at electrolyte oxide interfaces , 1996 .

[6]  V. Shilov,et al.  Low-Frequency Dielectrophoresis and the Polarization Interaction of Uncharged Spherical Particles with an Induced Debye Atmosphere of Arbitrary Thickness , 2001 .

[7]  V. Studer,et al.  Experimental observation of induced-charge electro-osmosis around a metal wire in a microchannel , 2005 .

[8]  A. Stemmer,et al.  Electro-osmotic streaming on application of traveling-wave electric fields. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  H. Morgan,et al.  Pumping of liquids with traveling-wave electroosmosis , 2005 .

[10]  V. Shilov,et al.  Field-induced disturbance of the double layer electro-neutrality and non-linear electrophoresis. , 2003, Advances in colloid and interface science.

[11]  J. Lyklema On the slip process in electrokinetics , 1994 .

[12]  Castellanos,et al.  Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. II. A linear double-layer analysis , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  M. Bazant,et al.  Induced-charge electro-osmosis , 2003, Journal of Fluid Mechanics.

[14]  J. Duval,et al.  Rigorous Analysis of Reversible Faradaic Depolarization Processes in the Electrokinetics of the Metal/Electrolyte Solution Interface , 2003 .

[15]  H. A. Pohl,et al.  Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields , 1978 .

[16]  H. Morgan,et al.  Ac electrokinetics: a review of forces in microelectrode structures , 1998 .

[17]  J. R. Melcher,et al.  Electrohydrodynamics: A Review of the Role of Interfacial Shear Stresses , 1969 .

[18]  E. Barsoukov,et al.  Impedance spectroscopy : theory, experiment, and applications , 2005 .

[19]  H. Morgan,et al.  Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. III. Observation of streamlines and numerical simulation. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  V. Studer,et al.  An integrated AC electrokinetic pump in a microfluidic loop for fast and tunable flow control. , 2004, The Analyst.

[21]  A. Ajdari,et al.  Electrically induced interactions between colloidal particles in the vicinity of a conducting plane. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  V. Murtsovkin,et al.  Steady flows in the neighborhood of a drop of mercury with the application of a variable external electric field , 1991 .

[23]  D. Long,et al.  Electrophoretic mobility of composite objects in free solution: Application to DNA separation , 1996, Electrophoresis.

[24]  Eric F Darve,et al.  Hydrodynamic interactions in the induced-charge electrophoresis of colloidal rod dispersions , 2005, Journal of Fluid Mechanics.

[25]  A. S. Dukhin,et al.  Pair interaction of particles in electric field. 1. Features of hydrodynamic interaction of polarized particles , 1986 .

[26]  Johannes G.E. Gardeniers,et al.  Field-effect control of electro-osmotic flow in microfluidic networks , 2005 .

[27]  Michael Seul,et al.  Assembly of ordered colloidal aggregrates by electric-field-induced fluid flow , 1997, Nature.

[28]  S. Dukhin,et al.  Aperiodic capillary electrophoresis method using an alternating current electric field for separation of macromolecules , 2005, Electrophoresis.

[29]  J. Santiago,et al.  Porous glass electroosmotic pumps: theory. , 2003, Journal of colloid and interface science.

[30]  M. Bazant,et al.  Breaking symmetries in induced-charge electro-osmosis and electrophoresis , 2005, Journal of Fluid Mechanics.

[31]  S. Dukhin,et al.  Kinetic aspects of electrochemistry of disperse systems. Part II. Induced dipole moment and the non-equilibrium double layer of a colloid particle , 1980 .

[32]  John L. Anderson,et al.  Colloid Transport by Interfacial Forces , 1989 .

[33]  Leonid Shtilman,et al.  Voltage against current curves of cation exchange membranes , 1979 .

[34]  D. Long,et al.  Symmetry Properties of the Electrophoretic Motion of Patterned Colloidal Particles , 1998 .

[35]  A. Dukhin Biospecific mechanism of double layer formation and peculiarities of cell electrophoresis , 1993 .

[36]  E. Hasselbrink,et al.  Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations , 2004, Electrophoresis.

[37]  H. Helmholtz,et al.  Studien über electrische Grenzschichten , 1879 .

[38]  Robert S. Eisenberg,et al.  Coupling Poisson–Nernst–Planck and density functional theory to calculate ion flux , 2002 .

[39]  Samuel,et al.  Propulsion of Microorganisms by Surface Distortions. , 1996, Physical review letters.

[40]  Martin Z. Bazant,et al.  Current-Voltage Relations for Electrochemical Thin Films , 2005, SIAM J. Appl. Math..

[41]  D A Saville,et al.  Electrically guided assembly of planar superlattices in binary colloidal suspensions. , 2003, Physical review letters.

[42]  G. K. Huijs,et al.  Faradaic depolarization in the electrokinetics of the metal-electrolyte solution interface. , 2003, Journal of colloid and interface science.

[43]  Martin Z. Bazant,et al.  Electrochemical Thin Films at and above the Classical Limiting Current , 2005, SIAM J. Appl. Math..

[44]  Ilhan A. Aksay,et al.  Assembly of Colloidal Crystals at Electrode Interfaces , 1997 .

[45]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[46]  D. Saville ELECTROHYDRODYNAMICS:The Taylor-Melcher Leaky Dielectric Model , 1997 .

[47]  Y. Levin,et al.  Electrostatic correlations: from plasma to biology , 2002 .

[48]  R. Schasfoort,et al.  Field-effect flow control for microfabricated fluidic networks , 1999, Science.

[49]  I. D. Morrison,et al.  Electrical charges in nonaqueous media , 1993 .

[50]  J. L. Anderson,et al.  Electrophoresis of heterogeneous colloids: doublets of dissimilar particles , 1992 .

[51]  Emmanuel Trizac,et al.  Hydrodynamics within the electric double layer on slipping surfaces. , 2004, Physical review letters.

[52]  D. Grahame The electrical double layer and the theory of electrocapillarity. , 1947, Chemical reviews.

[53]  L. Scriven,et al.  Structure of a dipolar hard sphere fluid near a neutral hard wall , 1992 .

[54]  S. Dukhin,et al.  Electrophoresis of solid particles at large Peclet numbers , 2002, Electrophoresis.

[55]  Björn Lindman,et al.  Surface and colloid science , 2001 .

[56]  Martin Z. Bazant,et al.  INDUCED CHARGE ELECTRO-OSMOSIS : THEORY AND MICROFLUIDIC APPLICATIONS , 2004 .

[57]  J. Duval Electrokinetics of the amphifunctional metal/electrolyte solution interface in the presence of a redox couple. , 2004, Journal of colloid and interface science.

[58]  S. Levine,et al.  Theory of the electric double layer using a modified poisson–boltzman equation , 1980 .

[59]  A. Rennie,et al.  Pumping of water with ac electric fields applied to asymmetric pairs of microelectrodes. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[60]  M. Bazant,et al.  Diffuse-charge dynamics in electrochemical systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[61]  F. A. Morrison,et al.  Electrophoresis of an insulating sphere normal to a conducting plane , 1970 .

[62]  John L. Anderson,et al.  Effect of nonuniform zeta potential on particle movement in electric fields , 1985 .

[63]  S. Quake,et al.  Microfluidics: Fluid physics at the nanoliter scale , 2005 .

[64]  Induced-charge electrophoresis of nonspherical particles , 2005 .

[65]  H. Morgan,et al.  Pumping of liquids with ac voltages applied to asymmetric pairs of microelectrodes. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  V. Murtsovkin Nonlinear flows near polarized disperse particles , 1996 .

[67]  H. Morgan,et al.  Ac electrokinetics: a survey of sub-micrometre particle dynamics , 2000 .

[68]  Castellanos,et al.  Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. I. Experimental measurements , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[69]  R. J. Hunter Foundations of Colloid Science , 1987 .

[70]  A. Ajdari,et al.  Pumping liquids using asymmetric electrode arrays , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[71]  Castellanos,et al.  AC Electric-Field-Induced Fluid Flow in Microelectrodes. , 1999, Journal of colloid and interface science.

[72]  Johannes Lyklema,et al.  Fundamentals of Interface and Colloid Science , 1991 .

[73]  J. Bikerman Electrokinetic equations and surface conductance. A survey of the diffuse double layer theory of colloidal solutions , 1940 .

[74]  Juan G. Santiago,et al.  A review of micropumps , 2004 .

[75]  Jeremy Levitan Experimental investigation of induced-charge electro-osmosis , 2005 .

[76]  J. Cervera Ion size effects on the current efficiency of narrow charged pores , 2001 .

[77]  Hsueh-Chia Chang,et al.  PROOF COPY 022212PHF Nonlinear electrokinetic ejection and entrainment due to polarization at nearly insulated wedges , 2002 .

[78]  Egon Matijević,et al.  Surface and Colloid Science , 1971 .

[79]  R. Parsons Fundamentals of interface and colloid science, volume II. Solid-liquid interfaces , 1997 .

[80]  Ping Wang,et al.  Electrokinetic micropump and micromixer design based on ac faradaic polarization , 2004 .

[81]  P. Sides Electrohydrodynamic Particle Aggregation on an Electrode Driven by an Alternating Electric Field Normal to It , 2001 .

[82]  G. Taylor Studies in electrohydrodynamics. I. The circulation produced in a drop by an electric field , 1966, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[83]  P. Wong,et al.  Electrokinetics in micro devices for biotechnology applications , 2004, IEEE/ASME Transactions on Mechatronics.