Simulation of Cement/Clay Interactions: Feedback on the Increasing Complexity of Modelling Strategies

During the last decade, numerous studies have focused on long-term predictive reactive transport modelling of cement/clay interactions. These simulations have been performed using modelling strategies of growing complexity, e.g. (i) taking more minerals into account, (ii) considering the effect of dissolution/precipitation kinetics versus thermodynamic equilibrium, (iii) refining the spatial discretisation of the models, etc. The present study reviews these simulations in order to identify the main factors affecting numerical results (e.g. mass transport, mesh, selected phases). Simulations are reproduced here with a consistent set of data and input parameters arranged with increasing order of complexity. Only such a standardised approach can allow a proper comparison of numerical results. Modelled reaction pathways (i.e. mineralogical transformations) appear to be independent from the chosen modelling assumptions. Irrespective of the simulated case or the underlying hypotheses, the geochemical transformations remain located very close to the cement/clay interface.

[1]  Tsutomu Sato,et al.  Atomic force microscopy study of montmorillonite dissolution under highly alkaline conditions , 2005 .

[2]  Morihiro Mihara,et al.  Modelling the interaction of bentonite with hyperalkaline fluids , 2002 .

[3]  P. Dove Reply to Comment on “Kinetics of quartz dissolution in electrolyte solutions using a hydrothermal mixed flow reactor” , 1990 .

[4]  E. Oelkers,et al.  Experimental study of K-feldspar dissolution rates as a function of chemical affinity at 150°C and pH 9 , 1994 .

[5]  D. Pellegrini,et al.  15 years of in situ cement–argillite interaction from Tournemire URL: Characterisation of the multi-scale spatial heterogeneities of pore space evolution , 2011 .

[6]  L. Trotignon,et al.  Comparison of performance of concrete barriers in a clayey geological medium , 2006 .

[7]  Steven Benbow,et al.  Reaction and diffusion of cementitious water in bentonite: Results of ‘blind’ modelling , 2009 .

[8]  Carl I. Steefel,et al.  Diffusion and reaction in rock matrix bordering a hyperalkaline fluid-filled fracture , 1994 .

[9]  S. Churakov,et al.  Exact analytical solutions for a diffusion problem coupled with a precipitation‐dissolution reaction and feedback of porosity change , 2011 .

[10]  D. L. Parkhurst,et al.  User's guide to PHREEQC (Version 2)-a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations , 1999 .

[11]  S. Gaboreau,et al.  Caesium uptake by Callovian–Oxfordian clayrock under alkaline perturbation , 2012 .

[12]  L. D. Windt,et al.  Reactive transport modeling of geochemical interactions at a concrete/argillite interface, Tournemire site (France) , 2008 .

[13]  G. E. Archie The electrical resistivity log as an aid in determining some reservoir characteristics , 1942 .

[14]  J. Ganor,et al.  Stoichiometry of smectite dissolution reaction , 2005 .

[15]  Carl I. Steefel,et al.  Approaches to Modeling Coupled Flow and Reaction in a 2-D Cementation Experiment , 2008 .

[16]  A. Lasaga,et al.  The effect of dislocation density on the dissolution rate of quartz , 1990 .

[17]  F. Brandt,et al.  Chlorite dissolution in the acid ph-range: a combined microscopic and macroscopic approach , 2003 .

[18]  E. Oelkers,et al.  Dissolution and crystallization rates of silicate minerals as a function of chemical affinity , 1995 .

[19]  J. Ganor,et al.  Smectite dissolution kinetics at 80°C and pH 8.8 , 2000 .

[20]  C. Robelin,et al.  ANDRA underground research laboratory: interpretation of the mineralogical and geochemical data acquired in the Callovian-Oxfordian formation by investigative drilling , 2004 .

[21]  Urs Mäder,et al.  Modeling experimental results of diffusion of alkaline solutions through a compacted bentonite barrier , 2010 .

[22]  R. Brueckner,et al.  Degradation of Cement and Concrete , 2010 .

[23]  H. Helgeson,et al.  Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions; IV, Retrieval of rate constants and activation parameters for the hydrolysis of pyroxene, wollastonite, olivine, andalusite, quartz, and nepheline , 1989 .

[24]  Philippe Blanc,et al.  Modeling diffusion of an alkaline plume in a clay barrier , 2004 .

[25]  E. Oelkers,et al.  Do clay mineral dissolution rates reach steady state , 2005 .

[26]  K. Knauss,et al.  The dissolution kinetics of quartz as a function of pH and time at 70°C , 1988 .

[27]  Carl I. Steefel,et al.  Multicomponent reactive transport in discrete fractures: II: Infiltration of hyperalkaline groundwater at Maqarin, Jordan, a natural analogue site , 1998 .

[28]  Christophe Tournassat,et al.  Influence of reaction kinetics and mesh refinement on the numerical modelling of concrete/clay interactions , 2009 .

[29]  A. Razafitianamaharavo,et al.  AFM and low-pressure argon adsorption analysis of geometrical properties of phyllosilicates. , 2006, Journal of colloid and interface science.

[30]  A. Razafitianamaharavo,et al.  Dissolution kinetics of synthetic Na-smectite. An integrated experimental approach , 2011 .

[31]  A. Bauer,et al.  Kaolinite and smectite dissolution rate in high molar KOH solutions at 35° and 80°C , 1998 .

[32]  O. Pokrovsky,et al.  Effect of pH and organic ligands on the kinetics of smectite dissolution at 25 °C , 2006 .

[33]  C. Steefel,et al.  Kaolinite dissolution and precipitation kinetics at 22 °C and pH 4 , 2007 .

[34]  S. Brantley,et al.  Feldspar dissolution at 25°C and pH 3: Reaction stoichiometry and the effect of cations , 1995 .

[35]  Vincent Lagneau,et al.  Design of a 2-D Cementation Experiment in Porous Medium Using Numerical Simulation , 2005 .

[36]  B. Allard,et al.  Chemical composition of cement pore solutions , 1989 .

[37]  C. Mörth,et al.  Dissolution of microcline and labradorite in a forest O horizon extract: the effect of naturally occurring organic acids , 2002 .

[38]  S. Altmann,et al.  Modelling the porewater chemistry of the Callovian-Oxfordian formation at a regional scale , 2006 .

[39]  L. Trotignon,et al.  Predicting the long term durability of concrete engineered barriers in a geological repository for radioactive waste , 2007 .

[40]  K. Knauss,et al.  The effect of malonate on the dissolution kinetics of albite, quartz, and microcline as a function of pH at 70°C , 1995 .

[41]  P. Brady,et al.  Surface chemistry of K-montmorillonite: ionic strength, temperature dependence and dissolution kinetics. , 2009, Journal of colloid and interface science.

[42]  E. Oelkers,et al.  An experimental study of illite dissolution kinetics as a function of pH from 1.4 to 12.4 and temperature from 5 to 50°C , 2003 .

[43]  S. Nakayama,et al.  Dissolution of montmorillonite in compacted bentonite by highly alkaline aqueous solutions and diffusivity of hydroxide ions , 2004 .

[44]  Christophe Tournassat,et al.  A robust model for pore-water chemistry of clayrock , 2009 .

[45]  C. Appelo,et al.  Multicomponent diffusion of a suite of tracers (HTO, Cl, Br, I, Na, Sr, Cs) in a single sample of Opalinus Clay , 2010 .

[46]  Chie Oda,et al.  Alteration of bentonite by hyperalkaline fluids : a review of the role of secondary minerals , 2007 .

[47]  P. Bennett,et al.  Quartz dissolution in organic-rich aqueous systems , 1991 .

[48]  J. D. Rimstidt,et al.  The kinetics of silica-water reactions , 1980 .

[49]  Steven Benbow,et al.  Natural systems evidence for the alteration of clay under alkaline conditions: An example from Searles Lake, California , 2010 .

[50]  D. Pellegrini,et al.  Coupled modeling of cement/claystone interactions and radionuclide migration. , 2004, Journal of contaminant hydrology.

[51]  Aimo Hautojärvi,et al.  Reactive transport modeling of the interaction between water and a cementitious grout in a fractured rock. Application to ONKALO (Finland) , 2011 .

[52]  P. Schindler,et al.  The proton promoted dissolution kinetics of K-montmorillonite , 1996 .

[53]  J. Soler,et al.  Reactive transport modeling of the interaction between a high-pH plume and a fractured marl: the case of Wellenberg , 2003 .

[54]  Eric C. Gaucher,et al.  In-situ interaction of cement paste and shotcrete with claystones in a deep disposal context , 2012, American Journal of Science.

[55]  B. Velde,et al.  Clay minerals in the Meuse-Haute Marne underground laboratory (France): Possible influence of organic matter on clay mineral evolution , 2004 .

[56]  Jonathan P. Icenhower,et al.  The dissolution kinetics of amorphous silica into sodium chloride solutions: effects of temperature and ionic strength , 2000 .

[57]  J. Ganor,et al.  The combined effect of pH and temperature on smectite dissolution rate under acidic conditions , 2005 .

[58]  J. Dandurand,et al.  An experimental study of kaolinite dissolution and precipitation kinetics as a function of chemical affinity and solution composition at 150°C, 40 bars, and pH 2, 6.8, and 7.8 , 1997 .

[59]  Patrick V. Brady,et al.  Kinetics of quartz dissolution at low temperatures , 1990 .

[60]  P. Dove The dissolution kinetics of quartz in aqueous mixed cation solutions , 1999 .

[61]  L. Charlet,et al.  The dissolution of hectorite: In-situ, real-time observations using atomic force microscopy , 2000 .

[62]  E. Salameh,et al.  Cementation of kerogen-rich marls by alkaline fluids released during weathering of thermally metamorphosed marly sediments. Part I: Isotopic (C,O) study of the Khushaym Matruk natural analogue (central Jordan) , 2007 .

[63]  C. Appelo,et al.  Obtaining the porewater composition of a clay rock by modeling the in- and out-diffusion of anions and cations from an in-situ experiment. , 2008, Journal of contaminant hydrology.

[64]  Arnault Lassin,et al.  Chemical model for cement-based materials: Temperature dependence of thermodynamic functions for nanocrystalline and crystalline C–S–H phases , 2010 .

[65]  W. House,et al.  Investigation of the pH dependence of the kinetics of quartz dissolution at 25 °C , 1992 .

[66]  Alain Meunier,et al.  Alteration of the Callovo-Oxfordian clay from Meuse-Haute Marne Underground Laboratory (France) by alkaline solution: II. Modelling of mineral reactions , 2004 .

[67]  M. Comarmond,et al.  The kinetics of the dissolution of chlorite as a function of pH and at 25°C , 2005 .

[68]  M. Comarmond,et al.  The kinetics of chlorite dissolution , 2007 .

[69]  Arnault Lassin,et al.  Chemical model for cement-based materials: Thermodynamic data assessment for phases other than C–S–H , 2010 .

[70]  P. Bennett,et al.  The dissolution of quartz in dilute aqueous solutions of organic acids at 25°C , 1988 .

[71]  L. Charlet,et al.  Nanomorphology of montmorillonite particles: Estimation of the clay edge sorption site density by low-pressure gas adsorption and AFM observations , 2003 .

[72]  J. Ganor,et al.  Towards the establishment of a reliable proxy for the reactive surface area of smectite , 2005 .

[73]  L. M. Walter,et al.  Quartz precipitation kinetics at 180°C in NaCl solutions—Implications for the usability of the principle of detailed balancing , 2005 .

[74]  G. V. Gibbs,et al.  Mechanisms of silica dissolution as inferred from the kinetic isotope effect , 1990 .

[75]  Å. Gustafsson,et al.  The effect of pH on chlorite dissolution rates at 25°C , 2002 .

[76]  P. Dove The dissolution kinetics of quartz in sodium chloride solutions at 25 degrees to 300 degrees C , 1994 .

[77]  K. L. Nagy,et al.  The effect of Al(OH)4− on the dissolution rate of quartz , 2006 .

[78]  Eric C. Gaucher,et al.  UNCERTAINTY IN THE REACTIVE TRANSPORT MODEL RESPONSE TO AN ALKALINE PERTURBATION IN A CLAY FORMATION , 2006 .

[79]  A. Vinsot,et al.  In situ characterization of the Callovo-Oxfordian pore water composition , 2008 .

[80]  Kathryn L. Nagy,et al.  Simultaneous precipitation kinetics of kaolinite and gibbsite at 80°C and pH 3 , 1993 .

[81]  Eric C Gaucher,et al.  Cement/clay interactions-- a review: experiments, natural analogues, and modeling. , 2006, Waste management.

[82]  E. Caballero,et al.  Kinetics of montmorillonite dissolution in granitic solutions , 2001 .

[83]  Patrick V. Brady,et al.  Experimental study of the effect of pH on the kinetics of montmorillonite dissolution at 25 °C , 2008 .

[84]  E. Wieland,et al.  Strontium binding by calcium silicate hydrates. , 2006, Journal of colloid and interface science.

[85]  H. Renon,et al.  Dissolution of quartz into dilute alkaline solutions at 90°C: A kinetic study , 1987 .

[86]  C. Appelo,et al.  Multicomponent diffusion modeling in clay systems with application to the diffusion of tritium, iodide, and sodium in Opalinus Clay. , 2007, Environmental science & technology.

[87]  Lara Duro,et al.  Andra thermodynamic database for performance assessment: ThermoChimie , 2014 .

[88]  Urs Mäder,et al.  High-pH Alteration of Argillaceous Rocks: An Experimental Study. , 1999 .