Estimating the steady-state mean from short transient simulations

Steady-state mean performance is a common basis for evaluating discrete event simulation models. However, analysis is complicated by autocorrelation and initial transients. We present confidence interval procedures for estimating the steady-state mean of a stochastic process from observed time series which may be short, autocorrelated, and transient. We extend the generalized least squares estimator of Snell and Schruben [IIE Trans. 17 (1985) 354] and develop confidence interval procedures for single and multiple-replication experiments. The procedures are asymptotically valid and, for short series with reasonable initializations (e.g., empty and idle), are comparable or superior to existing procedures. Further, we demonstrate and explain the robustness of the weighted batch means procedure of Bischak et al. [Manage. Sci. 39 (1993) 1002] to initialization bias. The proposed confidence interval procedure requires neither truncation of initial observations nor choice of batch size, and permits the existence of steady-state mean to be inferred from the data.

[1]  Jonathan D. Cryer,et al.  Time Series Analysis , 1986 .

[2]  Barry L. Nelson,et al.  Autoregressive-output-analysis methods revisited , 1994, Ann. Oper. Res..

[3]  Pieter A. Sheth-Voss,et al.  Estimating steady state mean from short transient simulations , 1996, Proceedings Winter Simulation Conference.

[4]  Philip Heidelberger,et al.  Experiments with initial transient deletion for parallel, replicated steady-state simulations , 1992 .

[5]  R. W. Andrews,et al.  Arma-Based Confidence Intervals for Simulation Output Analysis , 1984 .

[6]  Barry L. Nelson,et al.  Autoregressive to anything: Time-series input processes for simulation , 1996, Oper. Res. Lett..

[7]  Krzysztof Pawlikowski,et al.  Steady-state simulation of queueing processes: survey of problems and solutions , 1990, CSUR.

[8]  S. Pollock,et al.  Weighted Batch Means for Confidence Intervals in Steady-State Simulations , 1993 .

[9]  Jorma Rissanen,et al.  Order estimation by accumulated prediction errors , 1986 .

[10]  P. Glynn Some asymptotic formulas for markov chains with applications to simulation , 1984 .

[11]  G. Box,et al.  On a measure of lack of fit in time series models , 1978 .

[12]  Bruce W. Schmeiser,et al.  Overlapping batch means: something for nothing? , 1984, WSC '84.

[13]  Lee W. Schruben,et al.  Detecting Initialization Bias in Simulation Output , 1982, Oper. Res..

[14]  On the Best Unbiased Estimate for the Mean of a Short Autoregressive Time Series , 1992, Econometric Theory.

[15]  B. Schmeiser,et al.  Optimal mean-squared-error batch sizes , 1995 .

[16]  Lee W. Schruben,et al.  Confidence Interval Estimation Using Standardized Time Series , 1983, Oper. Res..

[17]  Hideo Fujimoto,et al.  Super simulation shell for plants , 1991, WSC '91.

[18]  Averill M. Law,et al.  Simulation Modeling and Analysis , 1982 .

[19]  Keebom Kang,et al.  An Investigation of Finite-Sample Behavior of Confidence Interval Estimators , 1992, Oper. Res..

[20]  G. S. Fishman Principles of Discrete Event Simulation , 1978 .

[21]  Randall P. Sadowski,et al.  Introduction to Simulation Using Siman , 1990 .

[22]  Lee W. Schruben,et al.  Weighting simulation data to reduce initialization effects , 1985 .

[23]  W. David Kelton,et al.  THE TRANSIENT BEHAVIOR OF THE M/E,/2 QUEUE AND , 1988 .

[24]  H. Schwetman Object-oriented simulation modeling with C++/CSIM17 , 1995, Winter Simulation Conference Proceedings, 1995..

[25]  Tag Gon Kim,et al.  An approach for finding discrete variable design alternatives using a simulation optimization method , 1999, WSC '99.

[26]  Chris Chatfield,et al.  Introduction to Statistical Time Series. , 1976 .

[27]  Thomas J. Schriber,et al.  A conceptual framework for research in the analysis of simulation output , 1981, CACM.

[28]  Amedeo R. Odoni,et al.  An Empirical Investigation of the Transient Behavior of Stationary Queueing Systems , 1983, Oper. Res..

[29]  Piet M. T. Broersen,et al.  On Finite Sample Theory for Autoregressive Model Order Selection , 1993, IEEE Trans. Signal Process..