MicroRNAs and genomic instability.

[1]  J. Hoheisel,et al.  Solid type clear cell carcinoma of the pancreas: differential diagnosis of an unusual case and review of the literature , 2007, Virchows Archiv.

[2]  Byoung-Tak Zhang,et al.  Molecular Basis for the Recognition of Primary microRNAs by the Drosha-DGCR8 Complex , 2006, Cell.

[3]  John G Doench,et al.  Recapitulation of short RNA-directed translational gene silencing in vitro. , 2006, Molecular cell.

[4]  Ligang Wu,et al.  MicroRNAs direct rapid deadenylation of mRNA. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[5]  R. Stephens,et al.  Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. , 2006, Cancer cell.

[6]  Annick Harel-Bellan,et al.  The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation , 2006, Nature Cell Biology.

[7]  Jerry Pelletier,et al.  Short RNAs repress translation after initiation in mammalian cells. , 2006, Molecular cell.

[8]  C. Croce,et al.  A microRNA expression signature of human solid tumors defines cancer gene targets , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[9]  E. Haralambieva,et al.  Lack of BIC and microRNA miR‐155 expression in primary cases of Burkitt lymphoma , 2006, Genes, chromosomes & cancer.

[10]  Michael T. McManus,et al.  The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development , 2005, Nature.

[11]  David I. K. Martin,et al.  MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[12]  David P. Bartel,et al.  Passenger-Strand Cleavage Facilitates Assembly of siRNA into Ago2-Containing RNAi Enzyme Complexes , 2005, Cell.

[13]  J. Yates,et al.  A role for the P-body component GW182 in microRNA function , 2005, Nature Cell Biology.

[14]  Isabelle Behm-Ansmant,et al.  A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. , 2005, RNA.

[15]  Yoshiaki Ito,et al.  Haploinsufficiency of Runx1/AML1 promotes myeloid features and leukaemogenesis in BXH2 mice , 2005, British journal of haematology.

[16]  Muller Fabbri,et al.  A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. , 2005, The New England journal of medicine.

[17]  William H Press,et al.  Human microRNAs target a functionally distinct population of genes with AT-rich 3′ UTRs , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[18]  A. van den Berg,et al.  BIC and miR‐155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas , 2005, The Journal of pathology.

[19]  C. Croce,et al.  miR-15 and miR-16 induce apoptosis by targeting BCL2. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[20]  W. Filipowicz,et al.  Inhibition of Translational Initiation by Let-7 MicroRNA in Human Cells , 2005, Science.

[21]  Jeffrey Shelton,et al.  An optimized isolation and labeling platform for accurate microRNA expression profiling. , 2005, RNA.

[22]  C. Croce,et al.  MicroRNA gene expression deregulation in human breast cancer. , 2005, Cancer research.

[23]  K. Kosik,et al.  MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. , 2005, Cancer research.

[24]  Satoru Takahashi,et al.  Increased dosage of Runx1/AML1 acts as a positive modulator of myeloid leukemogenesis in BXH2 mice , 2005, Oncogene.

[25]  Kathryn A. O’Donnell,et al.  c-Myc-regulated microRNAs modulate E2F1 expression , 2005, Nature.

[26]  S. Lowe,et al.  A microRNA polycistron as a potential human oncogene , 2005, Nature.

[27]  H. Horvitz,et al.  MicroRNA expression profiles classify human cancers , 2005, Nature.

[28]  Gregory J. Hannon,et al.  MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies , 2005, Nature Cell Biology.

[29]  H. Blau,et al.  Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies , 2005, Nature Cell Biology.

[30]  Hanah Margalit,et al.  Clustering and conservation patterns of human microRNAs , 2005, Nucleic acids research.

[31]  K. Lindblad-Toh,et al.  Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals , 2005, Nature.

[32]  F. Slack,et al.  RAS Is Regulated by the let-7 MicroRNA Family , 2005, Cell.

[33]  Wayne Tam,et al.  Accumulation of miR-155 and BIC RNA in human B cell lymphomas. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[34]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[35]  V. Kim,et al.  The Drosha-DGCR8 complex in primary microRNA processing. , 2004, Genes & development.

[36]  T. Tuschl,et al.  The Human DiGeorge Syndrome Critical Region Gene 8 and Its D. melanogaster Homolog Are Required for miRNA Biogenesis , 2004, Current Biology.

[37]  B. Cullen,et al.  Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. , 2004, RNA.

[38]  R. Shiekhattar,et al.  The Microprocessor complex mediates the genesis of microRNAs , 2004, Nature.

[39]  N. Rajewsky,et al.  A pancreatic islet-specific microRNA regulates insulin secretion , 2004, Nature.

[40]  Sanghyuk Lee,et al.  MicroRNA genes are transcribed by RNA polymerase II , 2004, The EMBO journal.

[41]  Michael Zuker,et al.  MicroRNA-responsive 'sensor' transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression , 2004, Nature Genetics.

[42]  C. Perou,et al.  A custom microarray platform for analysis of microRNA gene expression , 2004, Nature Methods.

[43]  W. Filipowicz,et al.  Tethering of human Ago proteins to mRNA mimics the miRNA-mediated repression of protein synthesis. , 2004, RNA.

[44]  J. M. Thomson,et al.  Argonaute2 Is the Catalytic Engine of Mammalian RNAi , 2004, Science.

[45]  Carl-Fredrik Tiger,et al.  Identification of candidate cancer-causing genes in mouse brain tumors by retroviral tagging. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[46]  T. Tuschl,et al.  Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. , 2004, Molecular cell.

[47]  C. Croce,et al.  An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[48]  D. Bartel,et al.  MicroRNA-Directed Cleavage of HOXB8 mRNA , 2004, Science.

[49]  C. Croce,et al.  Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[50]  John G Doench,et al.  Specificity of microRNA target selection in translational repression. , 2004, Genes & development.

[51]  V. Ambros,et al.  Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation , 2004, Genome Biology.

[52]  Arndt Borkhardt,et al.  High expression of precursor microRNA‐155/BIC RNA in children with Burkitt lymphoma , 2004, Genes, chromosomes & cancer.

[53]  K. Czaplinski,et al.  Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. , 2004, RNA.

[54]  D. Bartel,et al.  MicroRNAs Modulate Hematopoietic Lineage Differentiation , 2004, Science.

[55]  U. Kutay,et al.  Nuclear Export of MicroRNA Precursors , 2004, Science.

[56]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[57]  T. Du,et al.  Asymmetry in the Assembly of the RNAi Enzyme Complex , 2003, Cell.

[58]  S. Jayasena,et al.  Functional siRNAs and miRNAs Exhibit Strand Bias , 2003, Cell.

[59]  V. Kim,et al.  The nuclear RNase III Drosha initiates microRNA processing , 2003, Nature.

[60]  C. Burge,et al.  Vertebrate MicroRNA Genes , 2003, Science.

[61]  Takeshi Suzuki,et al.  Genome-Based Identification of Cancer Genes by Proviral Tagging in Mouse Retrovirus-Induced T-Cell Lymphomas , 2003, Journal of Virology.

[62]  Bob Löwenberg,et al.  Large-scale identification of novel potential disease loci in mouse leukemia applying an improved strategy for cloning common virus integration sites , 2002, Oncogene.

[63]  V. Kim,et al.  MicroRNA maturation: stepwise processing and subcellular localization , 2002, The EMBO journal.

[64]  Takeshi Suzuki,et al.  New genes involved in cancer identified by retroviral tagging , 2002, Nature Genetics.

[65]  Danielle Hulsman,et al.  Genome-wide retroviral insertional tagging of genes involved in cancer in Cdkn2a-deficient mice , 2002, Nature Genetics.

[66]  Anton Berns,et al.  High-throughput retroviral tagging to identify components of specific signaling pathways in cancer , 2002, Nature Genetics.

[67]  Anton Berns,et al.  Identification of oncogenes collaborating with p27Kip1 loss by insertional mutagenesis and high-throughput insertion site analysis , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[68]  V. Ambros,et al.  An Extensive Class of Small RNAs in Caenorhabditis elegans , 2001, Science.

[69]  T. Tuschl,et al.  Identification of Novel Genes Coding for Small Expressed RNAs , 2001, Science.

[70]  A Benner,et al.  Genomic aberrations and survival in chronic lymphocytic leukemia. , 2000, The New England journal of medicine.

[71]  B. Reinhart,et al.  The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans , 2000, Nature.

[72]  Y. Pekarsky,et al.  Genomic analysis of human and mouse TCL1 loci reveals a complex of tightly clustered genes. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[73]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[74]  N. Heisterkamp,et al.  Unique fusion of bcr and c-abl genes in Philadelphia chromosome positive acute lymphoblastic leukemia , 1987, Cell.

[75]  T. P. Dryja,et al.  Expression of recessive alleles by chromosomal mechanisms in retinoblastoma , 1983, Nature.

[76]  P. Leder,et al.  Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[77]  G. Klein,et al.  Characteristic chromosomal abnormalities in biopsies and lymphoid‐cell lines from patients with burkitt and non‐burkitt lymphomas , 1976, International journal of cancer.

[78]  G. Manolov,et al.  Marker Band in One Chromosome 14 from Burkitt Lymphomas , 1972, Nature.

[79]  P. Nowell,et al.  Chromosome studies on normal and leukemic human leukocytes. , 1960, Journal of the National Cancer Institute.

[80]  Yoshiaki Ito,et al.  Haploinsufficiency of Runx 1 / AML 1 promotes myeloid features and leukaemogenesis in BXH 2 mice , 2005 .

[81]  Takeshi Suzuki,et al.  RTCGD: retroviral tagged cancer gene database , 2004, Nucleic Acids Res..

[82]  Phillip A Sharp,et al.  siRNAs can function as miRNAs , 2003 .