Towards the Graceful Tree Conjecture: A Survey
暂无分享,去创建一个
Ljiljana Brankovic | Zahidul Islam | Mousa Alfalayleh | Helen Giggins | Z. Islam | L. Brankovic | H. Giggins | M. Alfalayleh
[1] Robert E. L. Aldred,et al. A note on the number of graceful labellings of paths , 2003, Discret. Math..
[2] Frank Van Bussel,et al. Relaxed Graceful Labellings of Trees , 2002, Electron. J. Comb..
[3] Michael William Newman,et al. The Laplacian spectrum of graphs , 2001 .
[4] Pavel Hrnciar,et al. All trees of diameter five are graceful , 2001, Discret. Math..
[5] J. Širáň,et al. Bipartite labeling of trees with maximum degree three , 1999, Journal of Graph Theory.
[6] M. Burzio,et al. The subdivision graph of a graceful tree is a graceful tree , 1998, Discret. Math..
[7] Vasanti N. Bhat-Nayak,et al. New families of graceful banana trees , 1996 .
[8] Alexander Rosa,et al. Bipartite labelings of trees and the gracesize , 1995, J. Graph Theory.
[9] J. G. Wang,et al. The gracefulness of a class of lobster trees , 1994 .
[10] Shizhen Zhao,et al. All Trees of Diameter Four Are Graceful , 1989 .
[11] A. Rosa,et al. Labellings of trees with maximum degree three - an improved bound , 2005 .
[12] S. M. Hegde,et al. On graceful trees. , 2002 .
[13] Hajo Broersma,et al. Another equivalent of the graceful tree conjecture , 1999, Ars Comb..
[14] Robert E. L. Aldred,et al. Graceful and harmonious labellings of trees , 1998 .
[15] B. Mohar. THE LAPLACIAN SPECTRUM OF GRAPHS y , 1991 .
[16] Peter Winkler,et al. Bandwidth versus Bandsize , 1988 .
[17] Chris D. Godsil,et al. Problem 25 , 1982, Discrete Mathematics.
[18] David A. Sheppard,et al. The factorial representation of balanced labelled graphs , 1976, Discret. Math..
[19] J. Bermond,et al. Graph decompositions and G-designs , 1976 .