Towards the Graceful Tree Conjecture: A Survey

A graceful labelling of an undirected graph G with n edges is a one-to-one function from the set of vertices of G to the set {0, 1, 2, . . . , n} such that the induced edge labels are all distinct. An induced edge label is the absolute value of the difference between the two end-vertex labels. The Graceful Tree Conjecture states that all trees have a graceful labelling. In this survey we present known results towards proving the Graceful Tree Conjecture.

[1]  Robert E. L. Aldred,et al.  A note on the number of graceful labellings of paths , 2003, Discret. Math..

[2]  Frank Van Bussel,et al.  Relaxed Graceful Labellings of Trees , 2002, Electron. J. Comb..

[3]  Michael William Newman,et al.  The Laplacian spectrum of graphs , 2001 .

[4]  Pavel Hrnciar,et al.  All trees of diameter five are graceful , 2001, Discret. Math..

[5]  J. Širáň,et al.  Bipartite labeling of trees with maximum degree three , 1999, Journal of Graph Theory.

[6]  M. Burzio,et al.  The subdivision graph of a graceful tree is a graceful tree , 1998, Discret. Math..

[7]  Vasanti N. Bhat-Nayak,et al.  New families of graceful banana trees , 1996 .

[8]  Alexander Rosa,et al.  Bipartite labelings of trees and the gracesize , 1995, J. Graph Theory.

[9]  J. G. Wang,et al.  The gracefulness of a class of lobster trees , 1994 .

[10]  Shizhen Zhao,et al.  All Trees of Diameter Four Are Graceful , 1989 .

[11]  A. Rosa,et al.  Labellings of trees with maximum degree three - an improved bound , 2005 .

[12]  S. M. Hegde,et al.  On graceful trees. , 2002 .

[13]  Hajo Broersma,et al.  Another equivalent of the graceful tree conjecture , 1999, Ars Comb..

[14]  Robert E. L. Aldred,et al.  Graceful and harmonious labellings of trees , 1998 .

[15]  B. Mohar THE LAPLACIAN SPECTRUM OF GRAPHS y , 1991 .

[16]  Peter Winkler,et al.  Bandwidth versus Bandsize , 1988 .

[17]  Chris D. Godsil,et al.  Problem 25 , 1982, Discrete Mathematics.

[18]  David A. Sheppard,et al.  The factorial representation of balanced labelled graphs , 1976, Discret. Math..

[19]  J. Bermond,et al.  Graph decompositions and G-designs , 1976 .