Modeling self-organization in pedestrians and animal groups from macroscopic and microscopic viewpoints

This paper is concerned with mathematical modeling of intelligent systems, such as human crowds and animal groups. In particular, the focus is on the emergence of different self-organized patterns from nonlocality and anisotropy of the interactions among individuals. A mathematical technique by time-evolving measures is introduced to deal with both macroscopic and microscopic scales within a unified modeling framework. Then self-organization issues are investigated and numerically reproduced at the proper scale, according to the kind of agents under consideration.

[1]  Vicsek,et al.  Novel type of phase transition in a system of self-driven particles. , 1995, Physical review letters.

[2]  Bertrand Maury,et al.  Handling of Contacts in Crowd Motion Simulations , 2009 .

[3]  C. Hemelrijk,et al.  Self-Organized Shape and Frontal Density of Fish Schools , 2008 .

[4]  Dirk Helbing,et al.  Pedestrian, Crowd and Evacuation Dynamics , 2013, Encyclopedia of Complexity and Systems Science.

[5]  A. Bertozzi,et al.  A Nonlocal Continuum Model for Biological Aggregation , 2005, Bulletin of mathematical biology.

[6]  R. Colombo,et al.  Existence of nonclassical solutions in a Pedestrian flow model , 2009 .

[7]  G. Parisi,et al.  Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study , 2007, Proceedings of the National Academy of Sciences.

[8]  H. Chaté,et al.  Modeling collective motion: variations on the Vicsek model , 2008 .

[9]  E. Tadmor,et al.  From particle to kinetic and hydrodynamic descriptions of flocking , 2008, 0806.2182.

[10]  R. R. Krausz Living in Groups , 2013 .

[11]  Serge P. Hoogendoorn,et al.  Self-Organization in Pedestrian Flow , 2005 .

[12]  L. Edelstein-Keshet Mathematical models of swarming and social aggregation , .

[13]  T. Vicsek,et al.  Simulation of pedestrian crowds in normal and evacuation situations , 2002 .

[14]  Dirk Helbing,et al.  Self-Organizing Pedestrian Movement , 2001 .

[15]  Steven V. Viscido,et al.  Self-Organized Fish Schools: An Examination of Emergent Properties , 2002, The Biological Bulletin.

[16]  R. Colombo,et al.  Pedestrian flows and non‐classical shocks , 2005 .

[17]  S. Gueron,et al.  The Dynamics of Herds: From Individuals to Aggregations , 1996 .

[18]  Bertrand Maury,et al.  Un Modèle de Mouvements de Foule , 2007 .

[19]  Benedetto Piccoli,et al.  Vehicular Traffic: A Review of Continuum Mathematical Models , 2009, Encyclopedia of Complexity and Systems Science.

[20]  A. Huth,et al.  The simulation of the movement of fish schools , 1992 .

[21]  B. Piccoli,et al.  Time-Evolving Measures and Macroscopic Modeling of Pedestrian Flow , 2008, 0811.3383.

[22]  T. Akimoto,et al.  (s)1/2=1.96TeVにおけるp反p衝突で305pb‐1を持つレプトン+光子+X事象での新物理学の探索 , 2006 .

[23]  Leah Edelstein-Keshet,et al.  A Conceptual Model for Milling Formations in Biological Aggregates , 2009, Bulletin of mathematical biology.

[24]  I. Couzin,et al.  Effective leadership and decision-making in animal groups on the move , 2005, Nature.

[25]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[26]  I. Couzin,et al.  Collective memory and spatial sorting in animal groups. , 2002, Journal of theoretical biology.

[27]  Michael Schreckenberg,et al.  Pedestrian and evacuation dynamics , 2002 .

[28]  Jesús Rosado,et al.  Asymptotic Flocking Dynamics for the Kinetic Cucker-Smale Model , 2010, SIAM J. Math. Anal..

[29]  Serge P Hoogendorn,et al.  EXTRACTING MICROSCOPIC PEDESTRIAN CHARACTERISTICS FROM VIDEO DATA : RESULTS FROM EXPERIMENTAL RESEARCH INTO PEDESTRIAN WALKING BEHAVIOR , 2003 .

[30]  Leah Edelstein-Keshet,et al.  Minimal mechanisms for school formation in self-propelled particles , 2008 .

[31]  Y. Tu,et al.  Moving and staying together without a leader , 2003, cond-mat/0401257.

[32]  Felipe Cucker,et al.  Emergent Behavior in Flocks , 2007, IEEE Transactions on Automatic Control.

[33]  Benedetto Piccoli,et al.  Pedestrian flows in bounded domains with obstacles , 2008, 0812.4390.

[34]  D. Helbing,et al.  Analytical approach to continuous and intermittent bottleneck flows. , 2006, Physical review letters.

[35]  C. Villani Chapter 2 – A Review of Mathematical Topics in Collisional Kinetic Theory , 2002 .

[36]  Jo Graham,et al.  Old and new , 2000 .

[37]  Roger L. Hughes,et al.  A continuum theory for the flow of pedestrians , 2002 .

[38]  F. Santambrogio,et al.  A MACROSCOPIC CROWD MOTION MODEL OF GRADIENT FLOW TYPE , 2010, 1002.0686.

[39]  N. Bellomo,et al.  ON THE MODELLING CROWD DYNAMICS FROM SCALING TO HYPERBOLIC MACROSCOPIC MODELS , 2008 .

[40]  Benedetto Piccoli,et al.  Effects of anisotropic interactions on the structure of animal groups , 2009, Journal of mathematical biology.

[41]  C. Villani The founding fathers of optimal transport , 2009 .

[42]  B. Maury,et al.  A mathematical framework for a crowd motion model , 2008 .

[43]  Serge P. Hoogendoorn,et al.  State-of-the-art of vehicular traffic flow modelling , 2001 .

[44]  I. Aoki An analysis of the schooling behavior of fish: Internal organization and communication process. , 1980 .

[45]  D. Wolf,et al.  Traffic and Granular Flow ’03 , 2005 .

[46]  V. Coscia,et al.  FIRST-ORDER MACROSCOPIC MODELLING OF HUMAN CROWD DYNAMICS , 2008 .

[47]  Charlotte K. Hemelrijk,et al.  Artificial Fish Schools: Collective Effects of School Size, Body Size, and Body Form , 2003, Artificial Life.

[48]  R. Hughes The flow of human crowds , 2003 .

[49]  K. Warburton,et al.  Tendency-distance models of social cohesion in animal groups. , 1991, Journal of Theoretical Biology.

[50]  Robert A. Meyers,et al.  Encyclopedia of Complexity and Systems Science , 2009 .

[51]  Yoshinobu Inada,et al.  Order and flexibility in the motion of fish schools. , 2002, Journal of theoretical biology.

[52]  F. Heppner Avian Flight Formations , 1974 .

[53]  C. Canuto,et al.  A Eulerian approach to the analysis of rendez-vous algorithms , 2008 .