On molecular statics and surface-enhanced continuum modeling of nano-structures
暂无分享,去创建一个
[1] Francesco dell’Isola,et al. On the derivation of thermomechanical balance equations for continuous systems with a nonmaterial interface , 1987 .
[2] M. Pitteri. On a statistical-kinetic model for generalized continua , 1990 .
[3] E Weinan,et al. A multiscale coupling method for the modeling of dynamics of solids with application to brittle cracks , 2010, J. Comput. Phys..
[4] A. Ian Murdoch,et al. A Critique of Atomistic Definitions of the Stress Tensor , 2007 .
[5] Reese E. Jones,et al. A material frame approach for evaluating continuum variables in atomistic simulations , 2008, J. Comput. Phys..
[6] Paul Steinmann,et al. A finite element framework for continua with boundary energies. Part II: The three-dimensional case , 2009 .
[7] G. Maugin,et al. The method of virtual power in continuum mechanics application to media presenting singular surfaces and interfaces , 1986 .
[8] Bin Liu,et al. Investigation on applicability of various stress definitions in atomistic simulation , 2009 .
[9] Codrin Cionca,et al. コヒーレントBraggロッド解析を用いて決定したInAsおよびGaSb薄膜の界面構造,結合特性そして組成 | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2007 .
[10] J. Kirkwood,et al. The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics , 1950 .
[11] Harold S. Park,et al. A surface Cauchy–Born model for nanoscale materials , 2006 .
[12] E. B. Tadmor,et al. Quasicontinuum models of interfacial structure and deformation , 1998 .
[13] Patrick A. Klein,et al. Coupled atomistic-continuum simulations using arbitrary overlapping domains , 2006, J. Comput. Phys..
[14] Harold S. Park,et al. A Surface Cauchy-Born model for silicon nanostructures , 2008 .
[15] J. Yvonnet,et al. Finite element model of ionic nanowires with size-dependent mechanical properties determined by ab initio calculations , 2011 .
[16] T. R. Hughes,et al. Mathematical foundations of elasticity , 1982 .
[17] M. Ortiz,et al. Quasicontinuum analysis of defects in solids , 1996 .
[18] Jonathan A. Zimmerman,et al. Calculation of stress in atomistic simulation , 2004 .
[19] P. Steinmann,et al. Reviewing the roots of continuum formulations in molecular systems. Part III: Stresses, couple stresses, heat fluxes , 2015 .
[20] Morton E. Gurtin,et al. A continuum theory of elastic material surfaces , 1975 .
[21] P. Steinmann,et al. Reviewing the roots of continuum formulations in molecular systems. Part I: Particle dynamics, statistical physics, mass and linear momentum balance equations , 2014 .
[22] R. Hardy,et al. Formulas for determining local properties in molecular‐dynamics simulations: Shock waves , 1982 .
[23] Steve Plimpton,et al. Fast parallel algorithms for short-range molecular dynamics , 1993 .
[24] Ted Belytschko,et al. A continuum‐to‐atomistic bridging domain method for composite lattices , 2010 .
[25] Harold S. Park,et al. Surface Cauchy-Born analysis of surface stress effects on metallic nanowires , 2007 .
[26] Ellad B. Tadmor,et al. A Unified Interpretation of Stress in Molecular Systems , 2010, 1008.4819.
[27] James D. Lee,et al. Concurrent Atomistic/Continuum Simulation of Thermo-Mechanical Coupling Phenomena , 2010 .
[28] Julien Yvonnet,et al. An XFEM/level set approach to modelling surface/interface effects and to computing the size-dependent effective properties of nanocomposites , 2008 .
[29] G. P. Moeckel,et al. Thermodynamics of an interface , 1975 .
[30] Ellad B. Tadmor,et al. A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods , 2009 .
[31] Foiles,et al. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. , 1986, Physical review. B, Condensed matter.
[32] Youping Chen. Local stress and heat flux in atomistic systems involving three-body forces. , 2006, The Journal of chemical physics.
[33] Micro‐to‐macro transitions for continua with surface structure at the microscale , 2012 .
[34] M. Ortiz,et al. An analysis of the quasicontinuum method , 2001, cond-mat/0103455.
[35] Harold S. Park,et al. An extended finite element/level set method to study surface effects on the mechanical behavior and properties of nanomaterials , 2010 .
[36] Wei Chen,et al. Multiscale methods for mechanical science of complex materials: Bridging from quantum to stochastic multiresolution continuum , 2010 .
[37] T. Belytschko,et al. A bridging domain method for coupling continua with molecular dynamics , 2004 .
[38] Paul Steinmann,et al. On thermomechanical solids with boundary structures , 2010 .
[39] Alexander Stukowski,et al. A variational formulation of the quasicontinuum method based on energy sampling in clusters , 2009 .
[40] James D. Lee,et al. Multiscale modeling of nano/micro systems by a multiscale continuum field theory , 2011 .
[41] Harold S. Park,et al. An introduction to computational nanomechanics and materials , 2004 .