A new AMBER-compatible force field parameter set for alkanes

AbstractWe present a new force field parameter set for simulating alkanes. Its functional form and parameters are chosen to make it directly compatible with the AMBER94/99/12 family of force fields implemented in the available software. The proposed parameterization enables universal description of both the conformational and thermodynamic properties of linear, branched, and cyclic alkanes. Such unification is achieved by using two essential principles: (1) reduction of the Lennard-Jones radius for all sp3 carbons to 1.75Å; (2) separate optimization of Lennard-Jones well depths for carbons with different degree of substitution. The new parameter set may prove to be optimal for description of alkyl residues in a broad range of biomolecules, from amino acids to lipids with their extended linear tails. FigureWe have a new force field parameter set applicable to various alkanes, including short and long chains, branches, as well as flexible or rigidly strained rings. The new set proves consistent, in agreement with ab-initio computations and experiment, description of conformational behavior, and thermodynamic physical properties.

[1]  J. Ilja Siepmann,et al.  TRANSFERABLE POTENTIALS FOR PHASE EQUILIBRIA. 3. EXPLICIT-HYDROGEN DESCRIPTION OF NORMAL ALKANES , 1999 .

[2]  A. A. Fokin,et al.  Overcoming lability of extremely long alkane carbon–carbon bonds through dispersion forces , 2011, Nature.

[3]  W. Shiu,et al.  Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals , 2006 .

[4]  Roman M. Balabin Enthalpy difference between conformations of normal alkanes: Raman spectroscopy study of n-pentane and n-butane. , 2009, The journal of physical chemistry. A.

[5]  Tjerk P. Straatsma,et al.  NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations , 2010, Comput. Phys. Commun..

[6]  D. Landau,et al.  Efficient, multiple-range random walk algorithm to calculate the density of states. , 2000, Physical review letters.

[7]  Alexander D. MacKerell,et al.  Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. , 2010, The journal of physical chemistry. B.

[8]  William F. Murphy,et al.  Rotational isomerism. XI. Raman spectra of n-butane, 2-methylbutane, and 2, 3-dimethylbutane , 1974 .

[9]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[10]  Alexander Lyubartsev,et al.  Partial atomic charges and their impact on the free energy of solvation , 2013, J. Comput. Chem..

[11]  David R. Lide,et al.  Microwave Spectrum, Structure, and Dipole Moment of Propane , 1960 .

[12]  William L Jorgensen,et al.  Conformation of alkanes in the gas phase and pure liquids. , 2006, The journal of physical chemistry. B.

[13]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[14]  Neeraj Rai,et al.  Transferable potentials for phase equilibria. 7. Primary, secondary, and tertiary amines, nitroalkanes and nitrobenzene, nitriles, amides, pyridine, and pyrimidine. , 2005, The journal of physical chemistry. B.

[15]  V. Barone,et al.  An improved AMBER force field for α,α-dialkylated peptides: intrinsic and solvent-induced conformational preferences of model systems. , 2013, Physical chemistry chemical physics : PCCP.

[16]  W. L. Jorgensen,et al.  The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. , 1988, Journal of the American Chemical Society.

[17]  Knut Teigen,et al.  LIPID11: a modular framework for lipid simulations using amber. , 2012, The journal of physical chemistry. B.

[18]  William L. Jorgensen,et al.  Optimized intermolecular potential functions for liquid hydrocarbons , 1984 .

[19]  P. Kollman,et al.  Application of RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of solvation , 1993 .

[20]  Alexander P. Lyubartsev,et al.  M.DynaMix – a scalable portable parallel MD simulation package for arbitrary molecular mixtures , 2000 .

[21]  Alexander P. Lyubartsev,et al.  Derivation and Systematic Validation of a Refined All-Atom Force Field for Phosphatidylcholine Lipids , 2012, The journal of physical chemistry. B.

[22]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[23]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[24]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[25]  T. Iijima Molecular Structure of Propane , 1972 .

[26]  Alexander P Lyubartsev,et al.  An Extension and Further Validation of an All-Atomistic Force Field for Biological Membranes. , 2012, Journal of chemical theory and computation.

[27]  A. Lyubartsev,et al.  New approach to Monte Carlo calculation of the free energy: Method of expanded ensembles , 1992 .

[28]  V. Barone,et al.  Extension of the AMBER force field to cyclic α,α dialkylated peptides. , 2012, Physical chemistry chemical physics : PCCP.

[29]  M. Hartmann Molecular mechanics. Von ULRICH BURKERT und NORMAN L. ALLINGER. ACS Monograph 177. Washington: American Chemical Society 1982. 430 S., US $ 77.95 , 1984 .

[30]  H. C. Andersen Molecular dynamics simulations at constant pressure and/or temperature , 1980 .

[31]  Carl-Johan Högberg,et al.  Modification of the CHARMM force field for DMPC lipid bilayer , 2008, J. Comput. Chem..

[32]  Mark E. Tuckerman,et al.  Reversible multiple time scale molecular dynamics , 1992 .

[33]  P. Kollman,et al.  How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? , 2000 .

[34]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .