Hybrid high-order discretizations combined with Nitsche’s method for Dirichlet and Signorini boundary conditions

We present two primal methods to weakly discretize (linear) Dirichlet and (nonlinear) Signorini boundary conditions in elliptic model problems. Both methods support polyhedral meshes with non-matching interfaces and are based on a combination of the Hybrid High-Order (HHO) method and Nitsche's method. Since HHO methods involve both cell unknowns and face unknowns, this leads to different formulations of Nitsche's consistency and penalty terms, either using the trace of the cell un-knowns (cell version) or using directly the face unknowns (face version). The face version uses equal order polynomials for cell and face unknowns, whereas the cell version uses cell unknowns of one order higher than the face unknowns. For Dirichlet conditions, optimal error estimates are established for both versions. For Signorini conditions, optimal error estimates are proven only for the cell version. Numerical experiments confirm the theoretical results, and also reveal optimal convergence for the face version applied to Signorini conditions.

[1]  Barbara I. Wohlmuth,et al.  An Optimal A Priori Error Estimate for Nonlinear Multibody Contact Problems , 2005, SIAM J. Numer. Anal..

[2]  A. Ern,et al.  A Hybrid High-Order method for the incompressible Navier-Stokes equations based on Temam's device , 2018, J. Comput. Phys..

[3]  Faker Ben Belgacem,et al.  Hybrid finite element methods for the Signorini problem , 2003, Math. Comput..

[4]  W. Han,et al.  Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity , 2002 .

[5]  Alexandre Ern,et al.  Analysis of Compatible Discrete Operator schemes for elliptic problems on polyhedral meshes , 2012, 1211.3354.

[6]  Fei Wang,et al.  Virtual element methods for the obstacle problem , 2018, IMA Journal of Numerical Analysis.

[7]  Jérôme Droniou,et al.  A Hybrid High-Order method for Leray-Lions elliptic equations on general meshes , 2015, Math. Comput..

[8]  Peter Wriggers,et al.  A virtual element method for contact , 2016 .

[9]  R. Eymard,et al.  A UNIFIED APPROACH TO MIMETIC FINITE DIFFERENCE, HYBRID FINITE VOLUME AND MIXED FINITE VOLUME METHODS , 2008, 0812.2097.

[10]  Yves Renard,et al.  Generalized Newton’s methods for the approximation and resolution of frictional contact problems in elasticity , 2013 .

[11]  Alexandre Ern,et al.  A Hybrid High-Order method for incremental associative plasticity with small deformations , 2018, Computer Methods in Applied Mechanics and Engineering.

[12]  R. Glowinski,et al.  Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .

[13]  J. Oden,et al.  Contact problems in elasticity , 1988 .

[14]  J. K. Djoko Discontinuous Galerkin finite element methods for variational inequalities of first and second kinds , 2008 .

[15]  Konstantin Lipnikov,et al.  Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes , 2005, SIAM J. Numer. Anal..

[16]  Haim Brezis,et al.  Équations et inéquations non linéaires dans les espaces vectoriels en dualité , 1968 .

[17]  Franz Chouly,et al.  An adaptation of Nitscheʼs method to the Tresca friction problem , 2014 .

[18]  J. Hesthaven,et al.  On the constants in hp-finite element trace inverse inequalities , 2003 .

[19]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[20]  M. Zhao,et al.  Error analysis of HDG approximations for elliptic variational inequality: obstacle problem , 2018, Numerical Algorithms.

[21]  Silvia Bertoluzza,et al.  High order VEM on curved domains , 2018, Rendiconti Lincei - Matematica e Applicazioni.

[22]  Patrick Laborde,et al.  Fixed point strategies for elastostatic frictional contact problems , 2008 .

[23]  Alexandre Ern,et al.  Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods , 2016 .

[24]  Guillaume Drouet,et al.  Optimal Convergence for Discrete Variational Inequalities Modelling Signorini Contact in 2D and 3D without Additional Assumptions on the Unknown Contact Set , 2015, SIAM J. Numer. Anal..

[25]  Alexandre Ern,et al.  A Discontinuous-Skeletal Method for Advection-Diffusion-Reaction on General Meshes , 2015, SIAM J. Numer. Anal..

[26]  Rolf Stenberg,et al.  On some techniques for approximating boundary conditions in the finite element method , 1995 .

[27]  Barbara Wohlmuth,et al.  Variationally consistent discretization schemes and numerical algorithms for contact problems* , 2011, Acta Numerica.

[28]  Peter Wriggers,et al.  Computational Contact Mechanics , 2002 .

[29]  Erik Burman,et al.  A penalty-free Nitsche method for the weak imposition of boundary conditions in compressible and incompressible elasticity , 2014, 1407.2229.

[30]  Matteo Cicuttin,et al.  Implementation of Discontinuous Skeletal methods on arbitrary-dimensional, polytopal meshes using generic programming , 2018, J. Comput. Appl. Math..

[31]  P. Hansbo,et al.  Augmented Lagrangian finite element methods for contact problems , 2016, ESAIM: Mathematical Modelling and Numerical Analysis.

[32]  Franz Chouly,et al.  On convergence of the penalty method for unilateral contact problems , 2012, 1204.4136.

[33]  W. Han,et al.  Discontinuous Galerkin methods for solving the Signorini problem , 2011, IMA Journal of Numerical Analysis.

[34]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[35]  A. Ern,et al.  Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .

[36]  Patrick Hild,et al.  A stabilized Lagrange multiplier method for the finite element approximation of contact problems in elastostatics , 2010, Numerische Mathematik.

[37]  Francesco Scarpini,et al.  Error estimates for the approximation of some unilateral problems , 1977 .

[38]  Jaroslav Haslinger Finite element analysis for unilateral problems with obstacles on the boundary , 1977 .

[39]  Peter Hansbo,et al.  Nitsche's method for interface problems in computa‐tional mechanics , 2005 .

[40]  Fei Wang,et al.  Discontinuous Galerkin Methods for Solving Elliptic Variational Inequalities , 2010, SIAM J. Numer. Anal..

[41]  Alexandre Ern,et al.  Hybrid High-Order methods for finite deformations of hyperelastic materials , 2017, ArXiv.

[42]  Jean-Luc Guermond,et al.  Finite element quasi-interpolation and best approximation , 2015, 1505.06931.

[43]  Alexandre Ern,et al.  Hybrid Discretization Methods with Adaptive Yield Surface Detection for Bingham Pipe Flows , 2018, J. Sci. Comput..

[44]  Alexandre Ern,et al.  An Unfitted Hybrid High-Order Method for Elliptic Interface Problems , 2017, SIAM J. Numer. Anal..

[45]  Pierre Alart,et al.  Méthode de Newton généralisée en mécanique du contact , 1997 .

[46]  Jérôme Pousin,et al.  An overview of recent results on Nitsche's method for contact problems , 2016 .

[47]  Fei Wang,et al.  Virtual element method for simplified friction problem , 2018, Appl. Math. Lett..

[48]  Karl Kunisch,et al.  Generalized Newton methods for the 2D-Signorini contact problem with friction in function space , 2005 .

[49]  Jaroslav Haslinger,et al.  Numerical methods for unilateral problems in solid mechanics , 1996 .

[50]  Alexandre Ern,et al.  A discontinuous skeletal method for the viscosity-dependent Stokes problem , 2015 .

[51]  Erik Burman,et al.  A Penalty-Free Nonsymmetric Nitsche-Type Method for the Weak Imposition of Boundary Conditions , 2011, SIAM J. Numer. Anal..

[52]  P. Alart,et al.  A generalized Newton method for contact problems with friction , 1988 .

[53]  Patrick Hild,et al.  Numerical Implementation of Two Nonconforming Finite Element Methods for Unilateral Contact , 2000 .

[54]  Daniele A. Di Pietro,et al.  A Hybrid High-Order Method for Nonlinear Elasticity , 2017, SIAM J. Numer. Anal..

[55]  Franz Chouly,et al.  A Nitsche-Based Method for Unilateral Contact Problems: Numerical Analysis , 2013, SIAM J. Numer. Anal..

[56]  M. Shashkov,et al.  The mimetic finite difference method on polygonal meshes for diffusion-type problems , 2004 .

[57]  J. Oden,et al.  Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .

[58]  M. Gunzburger,et al.  Weak-Galerkin finite element methods for a second-order elliptic variational inequality , 2018, Computer Methods in Applied Mechanics and Engineering.

[59]  Peter Hansbo,et al.  The Penalty-Free Nitsche Method and Nonconforming Finite Elements for the Signorini Problem , 2016, SIAM J. Numer. Anal..

[60]  K. Lipnikov,et al.  The nonconforming virtual element method , 2014, 1405.3741.

[61]  Alexandre Ern,et al.  An Arbitrary-Order and Compact-Stencil Discretization of Diffusion on General Meshes Based on Local Reconstruction Operators , 2014, Comput. Methods Appl. Math..

[62]  M. Moussaoui,et al.  Régularité des solutions d'un problème mêlé Dirichlet-Signorini dans un domaine polygonal plan , 1992 .

[63]  Mary F. Wheeler,et al.  A Priori Error Estimates for Finite Element Methods Based on Discontinuous Approximation Spaces for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[64]  Francis Tin-Loi,et al.  A node-to-node scheme for three-dimensional contact problems using the scaled boundary finite element method , 2019, Computer Methods in Applied Mechanics and Engineering.

[65]  R. Glowinski,et al.  Numerical Methods for Nonlinear Variational Problems , 1985 .

[66]  Franz Chouly,et al.  Symmetric and non-symmetric variants of Nitsche's method for contact problems in elasticity: theory and numerical experiments , 2014, Math. Comput..

[67]  Raytcho D. Lazarov,et al.  Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..

[68]  Patrick Hild,et al.  An Improved a Priori Error Analysis for Finite Element Approximations of Signorini's Problem , 2012, SIAM J. Numer. Anal..

[69]  T. Laursen Computational Contact and Impact Mechanics , 2003 .