Hybrid high-order discretizations combined with Nitsche’s method for Dirichlet and Signorini boundary conditions
暂无分享,去创建一个
[1] Barbara I. Wohlmuth,et al. An Optimal A Priori Error Estimate for Nonlinear Multibody Contact Problems , 2005, SIAM J. Numer. Anal..
[2] A. Ern,et al. A Hybrid High-Order method for the incompressible Navier-Stokes equations based on Temam's device , 2018, J. Comput. Phys..
[3] Faker Ben Belgacem,et al. Hybrid finite element methods for the Signorini problem , 2003, Math. Comput..
[4] W. Han,et al. Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity , 2002 .
[5] Alexandre Ern,et al. Analysis of Compatible Discrete Operator schemes for elliptic problems on polyhedral meshes , 2012, 1211.3354.
[6] Fei Wang,et al. Virtual element methods for the obstacle problem , 2018, IMA Journal of Numerical Analysis.
[7] Jérôme Droniou,et al. A Hybrid High-Order method for Leray-Lions elliptic equations on general meshes , 2015, Math. Comput..
[8] Peter Wriggers,et al. A virtual element method for contact , 2016 .
[9] R. Eymard,et al. A UNIFIED APPROACH TO MIMETIC FINITE DIFFERENCE, HYBRID FINITE VOLUME AND MIXED FINITE VOLUME METHODS , 2008, 0812.2097.
[10] Yves Renard,et al. Generalized Newton’s methods for the approximation and resolution of frictional contact problems in elasticity , 2013 .
[11] Alexandre Ern,et al. A Hybrid High-Order method for incremental associative plasticity with small deformations , 2018, Computer Methods in Applied Mechanics and Engineering.
[12] R. Glowinski,et al. Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .
[13] J. Oden,et al. Contact problems in elasticity , 1988 .
[14] J. K. Djoko. Discontinuous Galerkin finite element methods for variational inequalities of first and second kinds , 2008 .
[15] Konstantin Lipnikov,et al. Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes , 2005, SIAM J. Numer. Anal..
[16] Haim Brezis,et al. Équations et inéquations non linéaires dans les espaces vectoriels en dualité , 1968 .
[17] Franz Chouly,et al. An adaptation of Nitscheʼs method to the Tresca friction problem , 2014 .
[18] J. Hesthaven,et al. On the constants in hp-finite element trace inverse inequalities , 2003 .
[19] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .
[20] M. Zhao,et al. Error analysis of HDG approximations for elliptic variational inequality: obstacle problem , 2018, Numerical Algorithms.
[21] Silvia Bertoluzza,et al. High order VEM on curved domains , 2018, Rendiconti Lincei - Matematica e Applicazioni.
[22] Patrick Laborde,et al. Fixed point strategies for elastostatic frictional contact problems , 2008 .
[23] Alexandre Ern,et al. Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods , 2016 .
[24] Guillaume Drouet,et al. Optimal Convergence for Discrete Variational Inequalities Modelling Signorini Contact in 2D and 3D without Additional Assumptions on the Unknown Contact Set , 2015, SIAM J. Numer. Anal..
[25] Alexandre Ern,et al. A Discontinuous-Skeletal Method for Advection-Diffusion-Reaction on General Meshes , 2015, SIAM J. Numer. Anal..
[26] Rolf Stenberg,et al. On some techniques for approximating boundary conditions in the finite element method , 1995 .
[27] Barbara Wohlmuth,et al. Variationally consistent discretization schemes and numerical algorithms for contact problems* , 2011, Acta Numerica.
[28] Peter Wriggers,et al. Computational Contact Mechanics , 2002 .
[29] Erik Burman,et al. A penalty-free Nitsche method for the weak imposition of boundary conditions in compressible and incompressible elasticity , 2014, 1407.2229.
[30] Matteo Cicuttin,et al. Implementation of Discontinuous Skeletal methods on arbitrary-dimensional, polytopal meshes using generic programming , 2018, J. Comput. Appl. Math..
[31] P. Hansbo,et al. Augmented Lagrangian finite element methods for contact problems , 2016, ESAIM: Mathematical Modelling and Numerical Analysis.
[32] Franz Chouly,et al. On convergence of the penalty method for unilateral contact problems , 2012, 1204.4136.
[33] W. Han,et al. Discontinuous Galerkin methods for solving the Signorini problem , 2011, IMA Journal of Numerical Analysis.
[34] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[35] A. Ern,et al. Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .
[36] Patrick Hild,et al. A stabilized Lagrange multiplier method for the finite element approximation of contact problems in elastostatics , 2010, Numerische Mathematik.
[37] Francesco Scarpini,et al. Error estimates for the approximation of some unilateral problems , 1977 .
[38] Jaroslav Haslinger. Finite element analysis for unilateral problems with obstacles on the boundary , 1977 .
[39] Peter Hansbo,et al. Nitsche's method for interface problems in computa‐tional mechanics , 2005 .
[40] Fei Wang,et al. Discontinuous Galerkin Methods for Solving Elliptic Variational Inequalities , 2010, SIAM J. Numer. Anal..
[41] Alexandre Ern,et al. Hybrid High-Order methods for finite deformations of hyperelastic materials , 2017, ArXiv.
[42] Jean-Luc Guermond,et al. Finite element quasi-interpolation and best approximation , 2015, 1505.06931.
[43] Alexandre Ern,et al. Hybrid Discretization Methods with Adaptive Yield Surface Detection for Bingham Pipe Flows , 2018, J. Sci. Comput..
[44] Alexandre Ern,et al. An Unfitted Hybrid High-Order Method for Elliptic Interface Problems , 2017, SIAM J. Numer. Anal..
[45] Pierre Alart,et al. Méthode de Newton généralisée en mécanique du contact , 1997 .
[46] Jérôme Pousin,et al. An overview of recent results on Nitsche's method for contact problems , 2016 .
[47] Fei Wang,et al. Virtual element method for simplified friction problem , 2018, Appl. Math. Lett..
[48] Karl Kunisch,et al. Generalized Newton methods for the 2D-Signorini contact problem with friction in function space , 2005 .
[49] Jaroslav Haslinger,et al. Numerical methods for unilateral problems in solid mechanics , 1996 .
[50] Alexandre Ern,et al. A discontinuous skeletal method for the viscosity-dependent Stokes problem , 2015 .
[51] Erik Burman,et al. A Penalty-Free Nonsymmetric Nitsche-Type Method for the Weak Imposition of Boundary Conditions , 2011, SIAM J. Numer. Anal..
[52] P. Alart,et al. A generalized Newton method for contact problems with friction , 1988 .
[53] Patrick Hild,et al. Numerical Implementation of Two Nonconforming Finite Element Methods for Unilateral Contact , 2000 .
[54] Daniele A. Di Pietro,et al. A Hybrid High-Order Method for Nonlinear Elasticity , 2017, SIAM J. Numer. Anal..
[55] Franz Chouly,et al. A Nitsche-Based Method for Unilateral Contact Problems: Numerical Analysis , 2013, SIAM J. Numer. Anal..
[56] M. Shashkov,et al. The mimetic finite difference method on polygonal meshes for diffusion-type problems , 2004 .
[57] J. Oden,et al. Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .
[58] M. Gunzburger,et al. Weak-Galerkin finite element methods for a second-order elliptic variational inequality , 2018, Computer Methods in Applied Mechanics and Engineering.
[59] Peter Hansbo,et al. The Penalty-Free Nitsche Method and Nonconforming Finite Elements for the Signorini Problem , 2016, SIAM J. Numer. Anal..
[60] K. Lipnikov,et al. The nonconforming virtual element method , 2014, 1405.3741.
[61] Alexandre Ern,et al. An Arbitrary-Order and Compact-Stencil Discretization of Diffusion on General Meshes Based on Local Reconstruction Operators , 2014, Comput. Methods Appl. Math..
[62] M. Moussaoui,et al. Régularité des solutions d'un problème mêlé Dirichlet-Signorini dans un domaine polygonal plan , 1992 .
[63] Mary F. Wheeler,et al. A Priori Error Estimates for Finite Element Methods Based on Discontinuous Approximation Spaces for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[64] Francis Tin-Loi,et al. A node-to-node scheme for three-dimensional contact problems using the scaled boundary finite element method , 2019, Computer Methods in Applied Mechanics and Engineering.
[65] R. Glowinski,et al. Numerical Methods for Nonlinear Variational Problems , 1985 .
[66] Franz Chouly,et al. Symmetric and non-symmetric variants of Nitsche's method for contact problems in elasticity: theory and numerical experiments , 2014, Math. Comput..
[67] Raytcho D. Lazarov,et al. Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..
[68] Patrick Hild,et al. An Improved a Priori Error Analysis for Finite Element Approximations of Signorini's Problem , 2012, SIAM J. Numer. Anal..
[69] T. Laursen. Computational Contact and Impact Mechanics , 2003 .