Wronskian solutions of the Boussinesq equation—solitons, negatons, positons and complexitons

A Wronskian formulation is presented for the Boussinesq equation, which involves a broad set of sufficient conditions consisting of linear partial differential equations. The representative systems of the differential equations in the sufficient conditions are explicitly solved. The obtained solution formulae provide us with a comprehensive approach to construct exact and explicit solutions to the Boussinesq equation, by which solitons, negatons, positons and complexitons are computed for the Boussinesq equation.

[1]  H. McKean,et al.  Rational and elliptic solutions of the korteweg‐de vries equation and a related many‐body problem , 1977 .

[2]  Yunbo Zeng,et al.  Generalized Darboux transformations for the KP equation with self-consistent sources , 2004, nlin/0412070.

[3]  Ryogo Hirota,et al.  A Variety of Nonlinear Network Equations Generated from the Bäcklund Transformation for the Toda Lattice , 1976 .

[4]  Yishen Li,et al.  Bidirectional solitons on water. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Hasegawa,et al.  Propagation of electromagnetic solitary waves in dispersive nonlinear dielectrics. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[6]  J. Nimmo,et al.  Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations: The wronskian technique , 1983 .

[7]  R. Klein,et al.  Multiple Scales Asymptotics for Atmospheric Flows , 2004 .

[8]  Wen-Xiu Ma,et al.  Complexiton solutions to the Korteweg–de Vries equation , 2002 .

[9]  O. Ladyzhenskaya,et al.  The occurrence of collapse for quasilinear equations of parabolic and hyperbolic types , 1978 .

[10]  Gegenhasi,et al.  On an integrable two-dimensional special lattice with self-consistent sources , 2006 .

[11]  V. Matveev,et al.  Darboux Transformations and Solitons , 1992 .

[12]  Wenxiu Ma Wronskians, generalized Wronskians and solutions to the Korteweg–de Vries equation , 2003, nlin/0303068.

[13]  K. Maruno,et al.  Generalized Casorati Determinant and Positon-Negaton-Type Solutions of the Toda Lattice Equation , 2004 .

[14]  Wen-Xiu Ma,et al.  Complexiton solutions of the Korteweg-de Vries equation with self-consistent sources , 2005 .

[15]  Ryogo Hirota,et al.  Exact N‐soliton solutions of the wave equation of long waves in shallow‐water and in nonlinear lattices , 1973 .

[16]  Hans Petter Langtangen Fluid Mechanics Applications , 2003 .

[17]  V. Matveev,et al.  Generalized Wronskian formula for solutions of the KdV equations: first applications , 1992 .

[18]  J. Nimmo,et al.  A method of obtaining the N-soliton solution of the Boussinesq equation in terms of a wronskian , 1983 .

[19]  Yunbo Zeng,et al.  The solutions of the NLS equations with self-consistent sources , 2004, nlin/0412071.

[20]  Wenxiu Ma,et al.  Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions , 2004, nlin/0503001.

[21]  G. Tupper,et al.  Leading QCD corrections to W → jet + jet + γ , 1986 .

[22]  Yunbo Zeng,et al.  On the Toda lattice equation with self-consistent sources , 2005, nlin/0510014.

[23]  G. Whitham,et al.  Linear and Nonlinear Waves , 1976 .

[24]  Gegenhasi,et al.  On an integrable differential-difference equation with a source , 2006 .

[25]  Wen-Xiu Ma,et al.  Soliton, Positon and Negaton Solutions to a Schrödinger Self-consistent Source Equation , 2003 .

[26]  広田 良吾,et al.  The direct method in soliton theory , 2004 .

[27]  P. Constantin Bounds for Turbulent Transport , 2000, nlin/0004020.

[28]  Negaton and positon solutions of the KdV and mKdV hierarchy , 1995, hep-th/9505133.

[29]  On solutions of the Korteweg-De Vries equation , 1979 .

[30]  V. Matveev,et al.  Positon-positon and soliton-positon collisions: KdV case , 1992 .