이동 로봇의 경로 추종을 위한 웨이블릿 신경 회로망 기반 일반형 예측 제어에 관한 연구
暂无分享,去创建一个
본 논문에서는 다중 입 $\cdot$ 출력을 갖는 이동 로봇의 경로 추종을 위해 웨이블깃 신경 회로망에 기반한 예측 제어 방법을 제안한다. 제안된 방법에서 상태 예측기로는 학습 능력이 뛰어난 신경 회로망의 특성 및 웨이블릿 분해의 특성을 합성한 웨이블릿 신경 회로망을 사용한다. 예측기는 경사 하강법을 사용하여 웨이블릿 신경회로망의 출력에 대한 실제 이동 로봇의 상태 오차를 최소화하도록 학습된다. 또한 이동 로봇의 제어 신호인 직진 속도 및 각속도는 추종하고자 하는 기준 경로에 대한 이동 로봇의 예측 상태 오차를 이용하여 정의된 비용 함수를 최소화하도록 구해진다. 컴퓨터 모의 실험에서 변화되는 기준 경로에 대한 경로 추종 성능을 통해 제안한 예측 제어 시스템의 적용 가능성 및 효율성을 보인다. 【In this paper, we propose a wavelet neural network(WNN) based predictive control method for path tracking of mobile robots with multi-input and multi-output. In our control method, we use a WNN as a state predictor which combines the capability of artificial neural networks in learning processes and the capability of wavelet decomposition. A WNN predictor is tuned to minimize errors between the WNN outputs and the states of mobile robot using the gradient descent rule. And control signals, linear velocity and angular velocity, are calculated to minimize the predefined cost function using errors between the reference states and the predicted states. Through a computer simulation for the tracking performance according to varied track, we demonstrate the efficiency and the feasibility of our predictive control system.】