Stochastic network interdiction with incomplete preference

We study a class of stochastic network interdiction problems where the defender has incomplete (ambiguous) preferences. Specifically, we focus on the shortest path network interdiction modeled as a Stackelberg game, where the defender (leader) makes an interdiction decision first, and then the attacker (follower) selects a shortest path after the observation of random arc costs and interdiction effects in the network. We assume that the defender's risk preferences over exogenously given probabilities can be summarized by the expected utility theory. Although the exact form of the utility function is ambiguous to the defender, we assume that a set of pairwise gamble comparisons made by the defender is available, which can be used to restrict the shape of the utility function. We present two approaches to tackle this problem. The first approach conducts utility estimation and optimization separately, by first finding the best fit for a piecewise linear concave utility function according to the available data, and then optimizing the expected utility. The second approach integrates utility estimation and optimization, by modeling the utility ambiguity under a robust optimization framework following Armbruster and Delage [B. Armbruster and E. Delage, Manag. Sci., 61 (2015), 111‐128] and Hu and Mehrotra [J. Hu and S. Mehrotra, IIE Trans., 47 (2015), 358‐372]. We conduct extensive computational experiments to evaluate the performances of these approaches.

[1]  Andrew C. Trapp,et al.  Overcoming human trafficking via operations research and analytics: Opportunities for methods, models, and applications , 2017, Eur. J. Oper. Res..

[2]  D. Isaacs Risk , 2020, Journal of paediatrics and child health.

[3]  Laurent El Ghaoui,et al.  Robust Optimization , 2021, ICORES.

[4]  R. Kevin Wood,et al.  Deterministic network interdiction , 1993 .

[5]  R. Aumann UTILITY THEORY WITHOUT THE COMPLETENESS AXIOM , 1962 .

[6]  Chase Rainwater,et al.  Multi-period network interdiction problems with applications to city-level drug enforcement , 2012 .

[7]  Halil Bayrak,et al.  Shortest path network interdiction with asymmetric information , 2008, Networks.

[8]  T. E. Harris,et al.  Fundamentals of a Method for Evaluating Rail Net Capacities , 1955 .

[9]  Manish Verma,et al.  An analytical approach to the protection planning of a rail intermodal terminal network , 2017, Eur. J. Oper. Res..

[10]  W. Marsden I and J , 2012 .

[11]  D. Ellsberg Decision, probability, and utility: Risk, ambiguity, and the Savage axioms , 1961 .

[12]  Erick Delage,et al.  Decision Making Under Uncertainty When Preference Information Is Incomplete , 2015, Manag. Sci..

[13]  J. Salmeron,et al.  Analysis of electric grid security under terrorist threat , 2004, IEEE Transactions on Power Systems.

[14]  Chase Rainwater,et al.  Vulnerability assessment and re-routing of freight trains under disruptions: A coal supply chain network application , 2014 .

[15]  Xiao Lei,et al.  Stochastic maximum flow interdiction problems under heterogeneous risk preferences , 2018, Comput. Oper. Res..

[16]  Oleg A. Prokopyev,et al.  Sequential Shortest Path Interdiction with Incomplete Information , 2016, Decis. Anal..

[17]  J. Salmeron,et al.  Worst-Case Interdiction Analysis of Large-Scale Electric Power Grids , 2009, IEEE Transactions on Power Systems.

[18]  Siqian Shen,et al.  Risk-Averse Shortest Path Interdiction , 2016, INFORMS J. Comput..

[19]  John R. Birge,et al.  Introduction to Stochastic Programming , 1997 .

[20]  David L. Woodruff,et al.  A decomposition algorithm applied to planning the interdiction of stochastic networks , 2005 .

[21]  David P. Morton,et al.  A Stochastic Program for Interdicting Smuggled Nuclear Material , 2003 .

[22]  S. Sarkar,et al.  Stochastic Shortest Path Problems with Piecewise-Linear Concave Utility Functions , 1998 .

[23]  Kelly M. Sullivan,et al.  Securing a border under asymmetric information , 2014 .

[24]  Gerald G. Brown,et al.  How Probabilistic Risk Assessment Can Mislead Terrorism Risk Analysts , 2011, Risk analysis : an official publication of the Society for Risk Analysis.

[25]  Sanjay Mehrotra,et al.  Robust decision making over a set of random targets or risk-averse utilities with an application to portfolio optimization , 2015 .

[26]  Chunyan Miao,et al.  Optimal Interdiction of Illegal Network Flow , 2016, IJCAI.

[27]  Kelly James Cormican Computational Methods for Deterministic and Stochastic Network Interdiction Problems. , 1995 .

[28]  David P. Morton,et al.  Models for nuclear smuggling interdiction , 2007 .

[29]  Antonio Alonso Ayuso,et al.  Introduction to Stochastic Programming , 2009 .

[30]  Network interdiction – models , applications , unexplored directions , 2010 .

[31]  Egon Balas,et al.  programming: Properties of the convex hull of feasible points * , 1998 .

[32]  W. C. Turner,et al.  Optimal interdiction policy for a flow network , 1971 .

[33]  David P. Morton,et al.  Stochastic Network Interdiction , 1998, Oper. Res..

[34]  Jesse R. O'Hanley,et al.  A dynamic model for road protection against flooding , 2017, J. Oper. Res. Soc..

[35]  Robert Nau The Shape of Incomplete Preferences , 2003, ISIPTA.

[36]  Joseph Geunes,et al.  Modern network interdiction problems and algorithms , 2013 .

[37]  Alan W. McMasters,et al.  Optimal interdiction of a supply network , 1970 .

[38]  David P. Morton,et al.  Using sensors to interdict nuclear material smuggling , 2005 .

[39]  R. Kevin Wood,et al.  Shortest‐path network interdiction , 2002, Networks.

[40]  David P. Morton,et al.  Prioritizing network interdiction of nuclear smuggling , 2013 .

[41]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[42]  David L. Woodruff,et al.  Interdicting Stochastic Networks with Binary Interdiction Effort , 2003 .

[43]  Robert L. Steinrauf Network Interdiction Models , 1991 .

[44]  I. Gilboa,et al.  Maxmin Expected Utility with Non-Unique Prior , 1989 .

[45]  Satish Vadlamani,et al.  Interdicting attack graphs to protect organizations from cyber attacks: A bi-level defender-attacker model , 2016, Comput. Oper. Res..

[46]  Robert T. Clemen,et al.  Making Hard Decisions with DecisionTools , 2013 .

[47]  P. Alam,et al.  R , 1823, The Herodotus Encyclopedia.