Laser acceleration of ions: recent results and prospects for applications

We present a brief review of recent theoretical and numerical simulation results on the acceleration of ions from various targets irradiated by high-power femtosecond laser pulses. The results include: the optimization of the laser-plasma acceleration of ions over the thickness of a solid target; a new dependence of the energy of accelerated protons from a semi-transparent foil on the incident pulse energy; a theoretical model of plasma layer expansion in the vacuum for a fixed temperature of heated electrons, describing arbitrary regimes of particle acceleration, from the quasineutral flow of a plasma to Coulomb explosion; analytic theories of the relativistic Coulomb explosion of a spherical microtarget and the radial ponderomotive acceleration of ions from a laser channel in a transparent plasma; and calculations optimizing the production of isotopes for medicine using next-generation lasers.

[1]  Coulomb explosion in a cluster plasma , 2005 .

[2]  Ренормгрупповые симметрии для решений нелинейных краевых задач , 2008 .

[3]  W. Rozmus,et al.  Ion energy scaling under optimum conditions of laser plasma acceleration from solid density targets , 2014, 1409.3356.

[4]  Francesco Pegoraro,et al.  Nonlinear electrodynamics of the interaction of ultra-intense laser pulses with a thin foil , 1998 .

[5]  Vladimir Chvykov,et al.  Generation of GeV protons from 1 PW laser interaction with near critical density targets. , 2009, Physics of plasmas.

[6]  N. N. Krasnov Thick target yield , 1974 .

[7]  V. F. Kovalev,et al.  Quasimonoenergetic ion bunches from exploding microstructured targets , 2007 .

[8]  M. Borghesi,et al.  Electric field dynamics and ion acceleration in the self-channeling of a superintense laser pulse , 2007, physics/0701139.

[9]  Arkady Gonoskov,et al.  Horizons of petawatt laser technology , 2011, Physics-Uspekhi.

[10]  M. J. Edwards,et al.  Proton radiography as an electromagnetic field and density perturbation diagnostic (invited) , 2004 .

[11]  F. Réau,et al.  Ion acceleration in ultra-high contrast regime , 2009 .

[12]  S. V. Bulanov Laser ion acceleration for hadron therapy , 2014, 2014 International Conference Laser Optics.

[13]  V. F. Kovalev,et al.  Coulomb explosion of a cluster with a complex ion composition , 2008 .

[14]  S. V. Bulanov,et al.  Feasibility of using laser ion accelerators in proton therapy , 2002 .

[15]  D W Litzenberg,et al.  Accelerating monoenergetic protons from ultrathin foils by flat-top laser pulses in the directed-Coulomb-explosion regime. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  V. Tikhonchuk,et al.  Nuclear reactions triggered by laser-accelerated high-energy ions , 1999 .

[17]  M. D. Perry,et al.  Fast ignition by intense laser-accelerated proton beams. , 2001, Physical review letters.

[18]  V. F. Kovalev,et al.  Analytic solutions to the Vlasov equations for expanding plasmas. , 2003, Physical review letters.

[19]  C. Capjack,et al.  Self-organization of a plasma due to 3D evolution of the Weibel instability. , 2003, Physical review letters.

[20]  V. F. Kovalev,et al.  Particle dynamics during adiabatic expansion of a plasma bunch , 2002 .

[21]  T. C. Sangster,et al.  Intense high-energy proton beams from Petawatt-laser irradiation of solids. , 2000, Physical review letters.

[22]  V. F. Kovalev,et al.  Relativistic coulomb explosion of spherical microplasma , 2011 .

[23]  C Andersen,et al.  Enhancement of proton acceleration by hot-electron recirculation in thin foils irradiated by ultraintense laser pulses. , 2002, Physical review letters.

[24]  Gerard Mourou,et al.  Laser-triggered ion acceleration and table top isotope production , 2001 .

[25]  A. Brantov,et al.  Laser-based ion sources for medical applications , 2015 .

[26]  Marco Borghesi,et al.  Proton imaging: a diagnostic for inertial confinement fusion/fast ignitor studies , 2001 .

[27]  A. Celler,et al.  Implementation of Multi-Curie Production of 99mTc by Conventional Medical Cyclotrons , 2014, The Journal of Nuclear Medicine.

[28]  H. Coenen,et al.  Evaluation of excitation functions of 100Mo(p,d+pn)99Mo and 100Mo (p,2n)99mTc reactions: Estimation of long-lived Tc-impurity and its implication on the specific activity of cyclotron-produced (99m)Tc. , 2014, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[29]  C. Capjack,et al.  Fast ignitor concept with light ions , 2001 .

[30]  T. Ceccotti,et al.  Energetic ions at moderate laser intensities using foam-based multi-layered targets , 2014 .

[31]  Renormalization-group symmetries for solutions of nonlinear boundary value problems , 2008, 0812.4821.

[32]  P. Mora,et al.  Plasma expansion into a vacuum. , 2003, Physical review letters.

[33]  T. Tajima,et al.  Laser ion-acceleration scaling laws seen in multiparametric particle-in-cell simulations. , 2006, Physical review letters.

[34]  G. Mourou,et al.  Tc-99m production with ultrashort intense laser pulses , 2014 .

[35]  A M Fedotov,et al.  Quantum-electrodynamic cascades in intense laser fields , 2015 .

[36]  A. Kim,et al.  Proton and light-ion acceleration to relativistic GeV energies by the superstrong laser radiation interacting with a structured plasma target , 2008 .

[37]  G. Petrov,et al.  Neutron production from 7Li(d,xn) nuclear fusion reactions driven by high-intensity laser–target interactions , 2010 .

[38]  G. Mourou,et al.  Self-focusing, channel formation, and high-energy ion generation in interaction of an intense short laser pulse with a He jet. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[39]  Alexander Pukhov,et al.  Plasma-based methods for electron acceleration: current status and prospects , 2015 .

[40]  K. A. Flippo,et al.  Increased laser-accelerated proton energies via direct laser-light-pressure acceleration of electrons in microcone targetsa) , 2011 .

[41]  Discovery of the fast optical variability of GRB 080319B and the prospects for wide-field optical monitoring with high time resolution , 2010 .

[42]  V. F. Kovalev,et al.  On the maximum energy of ions in a disintegrating ultrathin foil irradiated by a high-power ultrashort laser pulse , 2005 .

[43]  A. Brantov,et al.  Laser‐Triggered Proton Acceleration From Micro‐Structured thin Targets , 2013 .

[44]  A. Ionin High-power IR- and UV-laser systems and their applications , 2012 .

[45]  Jens Limpert,et al.  The future is fibre accelerators , 2013, Nature Photonics.

[46]  S. Fritzler,et al.  Numerical simulation of isotope production for positron emission tomography with laser-accelerated ions , 2006 .

[47]  G. Petrov,et al.  Finite spot effects on radiation pressure acceleration from intense high-contrast laser interactions with thin targets. , 2012, Physical review letters.

[48]  D Kiefer,et al.  Radiation-pressure acceleration of ion beams driven by circularly polarized laser pulses. , 2009, Physical review letters.

[49]  Andrea Favalli,et al.  Bright laser-driven neutron source based on the relativistic transparency of solids. , 2013, Physical review letters.

[50]  Richard Van Noorden Radioisotopes: The medical testing crisis , 2013, Nature.

[51]  Deanna M. Pennington,et al.  Energetic proton generation in ultra-intense laser–solid interactions , 2000 .

[52]  A. Kaplan,et al.  Shock-shells in Coulomb explosion of nano-clusters , 2003, Conference on Lasers and Electro-Optics, 2003. CLEO '03..

[53]  P. Audebert,et al.  Laser-driven proton scaling laws and new paths towards energy increase , 2006 .