TRANSIT DETECTION IN THE MEarth SURVEY OF NEARBY M DWARFS: BRIDGING THE CLEAN-FIRST, SEARCH-LATER DIVIDE

In the effort to characterize the masses, radii, and atmospheres of potentially habitable exoplanets, there is an urgent need to find examples of such planets transiting nearby M dwarfs. The MEarth Project is an ongoing effort to do so, as a ground-based photometric survey designed to detect exoplanets as small as 2 R ⊕ transiting mid-to-late M dwarfs within 33 pc of the Sun. Unfortunately, identifying transits of such planets in photometric monitoring is complicated both by the intrinsic stellar variability that is common among these stars and by the nocturnal cadence, atmospheric variations, and instrumental systematics that often plague Earth-bound observatories. Here, we summarize the properties of MEarth data gathered so far, emphasizing the challenges they present for transit detection. We address these challenges with a new framework to detect shallow exoplanet transits in wiggly and irregularly spaced light curves. In contrast to previous methods that clean trends from light curves before searching for transits, this framework assesses the significance of individual transits simultaneously while modeling variability, systematics, and the photometric quality of individual nights. Our Method for Including Starspots and Systematics in the Marginalized Probability of a Lone Eclipse (MISS MarPLE) uses a computationally efficient semi-Bayesian approach to explore the vast probability space spanned by the many parameters of this model, naturally incorporating the uncertainties in these parameters into its evaluation of candidate events. We show how to combine individual transits processed by MISS MarPLE into periodic transiting planet candidates and compare our results to the popular box-fitting least-squares method with simulations. By applying MISS MarPLE to observations from the MEarth Project, we demonstrate the utility of this framework for robustly assessing the false alarm probability of transit signals in real data.

[1]  Adam A. Miller,et al.  The Monitor project : the search for transits in the open cluster NGC 2362 , 2008, 0803.4004.

[2]  John Skilling,et al.  Data analysis : a Bayesian tutorial , 1996 .

[3]  David Charbonneau,et al.  THE GJ1214 SUPER-EARTH SYSTEM: STELLAR VARIABILITY, NEW TRANSITS, AND A SEARCH FOR ADDITIONAL PLANETS , 2010, 1012.0518.

[4]  Pavlos Protopapas,et al.  Detrending time series for astronomical variability surveys , 2008, 0812.1010.

[5]  Shay Zucker,et al.  Directed follow-up strategy of low-cadence photometric surveys in search of transiting exoplanets - I. Bayesian approach for adaptive scheduling , 2011, 1105.5393.

[6]  David Charbonneau,et al.  Design Considerations for a Ground-Based Transit Search for Habitable Planets Orbiting M Dwarfs , 2007, 0709.2879.

[7]  A. Collier Cameron,et al.  A survey for planetary transits in the field of NGC 7789 , 2005 .

[8]  David Charbonneau,et al.  TrES-1: The Transiting Planet of a Bright K0 V Star , 2004 .

[9]  Jeffery J. Kolodziejczak,et al.  Kepler Presearch Data Conditioning I—Architecture and Algorithms for Error Correction in Kepler Light Curves , 2012, 1203.1382.

[10]  UC Berkeley,et al.  HAT-P-11b: A SUPER-NEPTUNE PLANET TRANSITING A BRIGHT K STAR IN THE KEPLER FIELD , 2009, 0901.0282.

[11]  L. Helmer,et al.  The Carlsberg Meridian Telescope CCD drift scan survey , 2002, astro-ph/0209184.

[12]  S. Aigrain,et al.  A Gaussian process framework for modelling instrumental systematics: application to transmission spectroscopy , 2011, 1109.3251.

[13]  S. Aigrain,et al.  Bayesian detection of planetary transits. A modified version of the Gregory-Loredo method for Bayesi , 2002 .

[14]  Sara Seager,et al.  THE OPTICAL AND NEAR-INFRARED TRANSMISSION SPECTRUM OF THE SUPER-EARTH GJ 1214b: FURTHER EVIDENCE FOR A METAL-RICH ATMOSPHERE , 2011, 1109.0582.

[15]  Marc Ollivier,et al.  The SARS algorithm: detrending CoRoT light curves with Sysrem using simultaneous external parameters , 2010, 1003.0427.

[16]  C. Blake,et al.  GJ 3236: A NEW BRIGHT, VERY LOW MASS ECLIPSING BINARY SYSTEM DISCOVERED BY THE MEarth OBSERVATORY , 2009, 0906.4365.

[17]  Peter Tenenbaum,et al.  DETECTION OF POTENTIAL TRANSIT SIGNALS IN THE FIRST THREE QUARTERS OF Kepler MISSION DATA , 2012, 1201.1048.

[18]  J. Jenkins,et al.  Some Tests to Establish Confidence in Planets Discovered by Transit Photometry , 2002 .

[19]  Sara Seager,et al.  Two Earth-sized planets orbiting Kepler-20 , 2011, Nature.

[20]  R. Redmer,et al.  THERMAL EVOLUTION AND STRUCTURE MODELS OF THE TRANSITING SUPER-EARTH GJ 1214b , 2010, 1010.0277.

[21]  S. Seager,et al.  THREE POSSIBLE ORIGINS FOR THE GAS LAYER ON GJ 1214b , 2009, 0912.3243.

[22]  Michael C. Liu,et al.  DETECTABILITY OF TRANSITING JUPITERS AND LOW-MASS ECLIPSING BINARIES IN SPARSELY SAMPLED PAN-STARRS-1 SURVEY DATA , 2009, 0909.0006.

[23]  J. Fortney,et al.  THE FLAT TRANSMISSION SPECTRUM OF THE SUPER-EARTH GJ1214b FROM WIDE FIELD CAMERA 3 ON THE HUBBLE SPACE TELESCOPE , 2011, 1111.5621.

[24]  S. Aigrain,et al.  Practical planet prospecting , 2004 .

[25]  J. Koppenhofer,et al.  Four ultra-short-period eclipsing M-dwarf binaries in the WFCAM Transit Survey , 2012, 1206.1200.

[26]  David Charbonneau,et al.  NLTT 41135: A FIELD M DWARF + BROWN DWARF ECLIPSING BINARY IN A TRIPLE SYSTEM, DISCOVERED BY THE MEARTH OBSERVATORY , 2010, 1006.1793.

[27]  P. Conroy,et al.  HATSouth: A Global Network of Fully Automated Identical Wide-Field Telescopes , 2012, 1206.1391.

[28]  Roy R. Gal,et al.  An Exposure Guide for Taking Twilight Flatfields With large Format CCDs , 1993 .

[29]  P. Berlind,et al.  LSPM J1112+7626: DETECTION OF A 41 DAY M-DWARF ECLIPSING BINARY FROM THE MEARTH TRANSIT SURVEY , 2011, 1109.2055.

[30]  E. Agol,et al.  APOSTLE OBSERVATIONS OF GJ 1214b: SYSTEM PARAMETERS AND EVIDENCE FOR STELLAR ACTIVITY , 2010, 1012.1180.

[31]  K. Menou ATMOSPHERIC CIRCULATION AND COMPOSITION OF GJ1214b , 2011, 1109.1574.

[32]  J. Fortney,et al.  OBSERVATIONAL EVIDENCE FOR A METAL-RICH ATMOSPHERE ON THE SUPER-EARTH GJ1214b , 2011, 1103.2370.

[33]  Jon M. Jenkins,et al.  The Impact of Solar-like Variability on the Detectability of Transiting Terrestrial Planets , 2002 .

[34]  Adam L. Kraus,et al.  THREE NEW ECLIPSING WHITE-DWARF–M-DWARF BINARIES DISCOVERED IN A SEARCH FOR TRANSITING PLANETS AROUND M-DWARFS , 2011, The Astrophysical Journal.

[35]  D. K. Cullers,et al.  A matched filter method for ground-based sub-noise detection of terrestrial extrasolar planets in eclipsing binaries: application to CM Draconis. , 1996, Icarus.

[36]  A. Collier Cameron,et al.  Searching for Planetary Transits in the Field of Open Cluster NGC 6819 - I. ⋆ , 2003 .

[37]  Suzanne Aigrain,et al.  The Monitor project: data processing and light curve production , 2006 .

[38]  John P. Wisniewski,et al.  PROBING THE FLARE ATMOSPHERES OF M DWARFS USING INFRARED EMISSION LINES , 2011, 1111.7072.

[39]  J. Bovy,et al.  Data analysis recipes: Fitting a model to data , 2010, 1008.4686.

[40]  D. Sasselov,et al.  NON-DETECTION OF PREVIOUSLY REPORTED TRANSITS OF HD 97658b WITH MOST PHOTOMETRY , 2012, 1204.3135.

[41]  Michael F. Skrutskie,et al.  Near-Infrared Monitoring of Ultracool Dwarfs: Prospects for Searching for Transiting Companions , 2008, 0806.2883.

[42]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[43]  J. E. Stys,et al.  The XO Project: Searching for Transiting Extrasolar Planet Candidates , 2005, astro-ph/0505560.

[44]  Suzanne Aigrain,et al.  The Monitor project: searching for occultations in young open clusters , 2006, astro-ph/0611431.

[45]  F. Bouchy,et al.  The HARPS search for southern extra-solar planets - XXXI. The M-dwarf sample , 2011, 1111.5019.

[46]  Cambridge,et al.  Characterising stellar micro-variability for planetary transit searches , 2003, astro-ph/0310381.

[47]  Bruce R. Dawson,et al.  A cloud monitoring system for remote sites , 1998 .

[48]  Antonino Francesco Lanza,et al.  Comparative blind test of five planetary transit detection algorithms on realistic synthetic light curves , 2005 .

[49]  R. W. Noyes,et al.  A trend filtering algorithm for wide-field variability surveys , 2004 .

[50]  Stephen R. Kane,et al.  OBSERVATIONAL WINDOW FUNCTIONS IN PLANET TRANSIT SURVEYS , 2009, 0907.1614.

[51]  Cullen H. Blake,et al.  Measuring NIR Atmospheric Extinction Using a Global Positioning System Receiver , 2011, 1109.6703.

[52]  J. Fortney,et al.  THE ATMOSPHERIC CHEMISTRY OF GJ 1214b: PHOTOCHEMISTRY AND CLOUDS , 2011, 1104.5477.

[53]  Xavier Bonfils,et al.  A super-Earth transiting a nearby low-mass star , 2009, Nature.

[54]  B. Scott Gaudi,et al.  Fraction of Stars With Planets in the Open Cluster NGC 1245 , 2004 .

[55]  Tsevi Mazeh,et al.  Correcting systematic effects in a large set of photometric light curves , 2005, astro-ph/0502056.

[56]  S. Aigrain,et al.  Detecting planetary transits in the presence of stellar variability: Optimal filtering and the use of colour information , 2003 .

[57]  Z. Ninkov,et al.  Observational Limits on Terrestrial-sized Inner Planets around the CM Draconis System Using the Photometric Transit Method with a Matched-Filter Algorithm , 2000, astro-ph/0001177.

[58]  E. Falco,et al.  ON THE ANGULAR MOMENTUM EVOLUTION OF FULLY CONVECTIVE STARS: ROTATION PERIODS FOR FIELD M-DWARFS FROM THE MEarth TRANSIT SURVEY , 2010, 1011.4909.

[59]  Antonino Francesco Lanza,et al.  Modelling solar-like variability for the detection of Earth-like planetary transits - I. Performance of the three-spot modelling and harmonic function fitting , 2008, 0802.2990.

[60]  M. Shara,et al.  A Catalog of Northern Stars with Annual Proper Motions Larger than 0.15 Seconds of Arc (lspm Catalog -north) , 2004 .

[61]  K. Stanek,et al.  Wide‐Field Millimagnitude Photometry with the HAT: A Tool for Extrasolar Planet Detection , 2004, astro-ph/0401219.

[62]  M. R. Haas,et al.  PLANET OCCURRENCE WITHIN 0.25 AU OF SOLAR-TYPE STARS FROM KEPLER , 2011, 1103.2541.

[63]  I. Torino,et al.  Photometric transit search for planets around cool stars from the western Italian Alps: a pilot study , 2012, 1206.1729.

[64]  Joshua N. Winn,et al.  THE TRANSIT LIGHT CURVE PROJECT. XIII. SIXTEEN TRANSITS OF THE SUPER-EARTH GJ 1214b , 2010, 1012.0376.

[65]  Norman Murray,et al.  BROADBAND TRANSMISSION SPECTROSCOPY OF THE SUPER-EARTH GJ 1214b SUGGESTS A LOW MEAN MOLECULAR WEIGHT ATMOSPHERE , 2011, 1104.0011.

[66]  G. Marcy,et al.  Detection of a Transiting Low-Density Super-Earth , 2011, 1109.2549.

[67]  David J Armstrong,et al.  A hot Uranus transiting the nearby M dwarf GJ 3470 - Detected with HARPS velocimetry. Captured in transit with TRAPPIST photometry , 2012, 1206.5307.

[68]  Shay Zucker,et al.  DETECTION OF TRANSITING JOVIAN EXOPLANETS BY GAIA PHOTOMETRY—EXPECTED YIELD , 2012, 1205.4725.

[69]  G. Kov'acs,et al.  A box-fitting algorithm in the search for periodic transits , 2002, astro-ph/0206099.

[70]  Searching for transits in data with long time baselines and poor sampling , 2011 .

[71]  G. Laughlin,et al.  Discovery and Characterization of Transiting Super Earths Using an All-Sky Transit Survey and Follow-up by the James Webb Space Telescope , 2009, 0903.4880.

[72]  L. Hebb,et al.  KELT-2Ab: A HOT JUPITER TRANSITING THE BRIGHT (V = 8.77) PRIMARY STAR OF A BINARY SYSTEM , 2012, 1206.1592.

[73]  Las Cumbres Observatory Global Telescope Network,et al.  PLANETARY CANDIDATES OBSERVED BY KEPLER. III. ANALYSIS OF THE FIRST 16 MONTHS OF DATA , 2012, 1202.5852.

[74]  A. Claret,et al.  A new non-linear limb-darkening law for LTE stellar atmosphere models III - Sloan filters: Calculations for –5.0 ≤ log [M/H] ≤ +1, 2000 K ≤ T$\mathsf{_{eff}}$ ≤ 50 000 K at several surface gravities , 2004 .

[75]  S. Hawley,et al.  THE IMPLICATIONS OF M DWARF FLARES ON THE DETECTION AND CHARACTERIZATION OF EXOPLANETS AT INFRARED WAVELENGTHS , 2011, 1111.1793.

[76]  John P. Wisniewski,et al.  A WHITE LIGHT MEGAFLARE ON THE dM4.5e STAR YZ CMi , 2010, 1003.3057.

[77]  T. Barman,et al.  HIGH-RESOLUTION, DIFFERENTIAL, NEAR-INFRARED TRANSMISSION SPECTROSCOPY OF GJ 1214b , 2011, 1104.1173.

[78]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[79]  Frederic Pont,et al.  The effect of red noise on planetary transit detection , 2006, astro-ph/0608597.

[80]  J. Fortney,et al.  THE NATURE OF THE ATMOSPHERE OF THE TRANSITING SUPER-EARTH GJ 1214b , 2010, 1001.0976.

[81]  J. Koppenhoefer,et al.  Optical to near-infrared transit observations of super-Earth GJ 1214b: water-world or mini-Neptune? , 2011, 1111.2628.

[82]  Tim Naylor,et al.  Optimal photometry for colour–magnitude diagrams and its application to NGC 2547 , 2002, astro-ph/0205005.

[83]  Joshua N. Winn,et al.  PARAMETER ESTIMATION FROM TIME-SERIES DATA WITH CORRELATED ERRORS: A WAVELET-BASED METHOD AND ITS APPLICATION TO TRANSIT LIGHT CURVES , 2009, 0909.0747.

[84]  Keivan G. Stassun,et al.  KELT-1b: A STRONGLY IRRADIATED, HIGHLY INFLATED, SHORT PERIOD, 27 JUPITER-MASS COMPANION TRANSITING A MID-F STAR , 2012 .

[85]  Jean Manfroid,et al.  TRAPPIST: TRAnsiting Planets and PlanetesImals Small Telescope , 2011 .

[86]  Martin C. Stumpe,et al.  Kepler Presearch Data Conditioning II - A Bayesian Approach to Systematic Error Correction , 2012, 1203.1383.

[87]  U. L. Laguna,et al.  TRUFAS, a wavelet-based algorithm for the rapid detection of planetary transits , 2007, 0705.4557.

[88]  M. Deleuil,et al.  A Bayesian method for the detection of planetary transits , 2001 .

[89]  Jacob L. Bean,et al.  A ground-based transmission spectrum of the super-Earth exoplanet GJ 1214b , 2010, Nature.

[90]  Stephen R. Kane,et al.  Refining Exoplanet Ephemerides and Transit Observing Strategies , 2009, 0910.0010.

[91]  Harvard-Smithsonian Center for Astrophysics,et al.  Searching for Transiting Planets in Stellar Systems , 2005 .

[92]  Andrew T. Young,et al.  Photometric error analysis. VI. Confirmation of Reiger's theory of scintillation , 1967 .

[93]  B. Tingley Improvements to existing transit detection algorithms and their comparison , 2003 .