The use of a pair potential for the study of defects and disorder in aluminium

The authors have examined the usefulness of the Dagens, Rasolt and Taylor (DRT) interionic potential (1975) for calculating disorder and defect properties in Al from the point of view of a molecular dynamics (MD) computer simulation. The problem was complicated by the strong long-range oscillations present in the Al potential and careful attention was paid to this detail. The authors confirmed that the low-temperature phonons generated by the MD program agreed very well with the quasi-harmonic phonons of DRT and then proceeded to generate the high-temperature phonons. They also calculated the liquid structure factor obtaining satisfactory agreement with experiment. They found, not too surprisingly, that the calculated vacancy formation energy for Al was much smaller than experiment by about 0.5 eV. However they noted that if one allows for re-screening effects in the vicinity of the vacancy a subtle three-body force comes into play which, on a crude argument, accounts for this difference.

[1]  G. Jacucci,et al.  The nature of an interionic potential in the near-neighbour region in a simple metal , 1981 .

[2]  G. Jacucci,et al.  The calculation of vacancy formation energies in the alkali metals Li, Na and K , 1979 .

[3]  G. Jacucci,et al.  The use of long-range metallic pair potentials in computer simulations , 1979 .

[4]  V. Vítek,et al.  Periodic grain boundary structures in aluminium I. A combined experimental and theoretical investigation of coincidence grain boundary structure in aluminium , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[5]  R. W. Siegel,et al.  Electron and Positron Densities and the Temperature Dependence of the Positron Lifetime in a Vacancy in Aluminum , 1977 .

[6]  M. Klein,et al.  Anharmonic lattice dynamics of solid potassium , 1977 .

[7]  G. Jacucci,et al.  Vacancy Double Jumps and Atomic Diffusion in Aluminum and Sodium , 1977 .

[8]  P. Schofield,et al.  Monte Carlo calculation of the pair correlation function of liquid aluminium with a pseudopotential satisfying the compressibility sum rule , 1976 .

[9]  J. Hafner Structural, thermochemical and thermomechanical properties of binary alloys , 1976 .

[10]  M. Finnis,et al.  Vacancy formation energies and linear screening theory , 1976 .

[11]  W. Triftshaeuser,et al.  Positron trapping in solid and liquid metals , 1975 .

[12]  V. Vítek Stacking faults on {111} and {110} planes in aluminium , 1975 .

[13]  G. Brebec,et al.  Influence de la dose de neutrons rapides sur la formation des cavites dans l'aluminium , 1975 .

[14]  V. Levy,et al.  Origine des boucles lacunaires observées dans l'aluminium pur et impur irradié aux neutrons rapides , 1975 .

[15]  M. Rasolt,et al.  Charge densities and interionic potentials in simple metals: Nonlinear effects. I , 1975 .

[16]  M. Finnis The energy and elastic constants of simple metals in terms of pairwise interactions , 1974 .

[17]  Z. Popović,et al.  On the vacancy formation energy and volume of simple cubic metals , 1974 .

[18]  A. Risbet,et al.  Ordre de cavites dans le magnesium et l'aluminium irradies aux neutrons rapides , 1974 .

[19]  J. M. Stallard,et al.  Liquid-Aluminum Structure Factor by Neutron Diffraction , 1973 .

[20]  H. Mehrer,et al.  Analysis of tracer and nuclear magnetic resonance measurements of self‐diffusion in aluminium , 1971 .

[21]  N. H. Packan Fluence and flux dependence of void formation in pure aluminum , 1971 .

[22]  T. Koehler,et al.  Anharmonic Interactions in Aluminum. II , 1971 .

[23]  R. D. Engardt Nuclear-Magnetic-Resonance Determination of the Activation Volume for Self-Diffusion in Aluminum , 1971 .

[24]  N. H. Packan VOIDS IN RE-IRRADIATED ALUMINUM. , 1970 .

[25]  D. Wallace,et al.  Anharmonic Interaction in Aluminum. I , 1970 .

[26]  D. Geldart,et al.  Wave-number dependence of the static screening function of an interacting electron gas. II. Higher-order exchange and correlation effects , 1970 .

[27]  R. Emrick,et al.  Effect of Pressure on Quenched-In Electrical Resistance in Gold and Aluminum , 1969 .

[28]  R. Sandström,et al.  Anharmonic widths and shifts in simple metals. Application to aluminium , 1969 .

[29]  Jr Robert W. Shaw Optimum Form of a Modified Heine-Abarenkov Model Potential for the Theory of Simple Metals , 1968 .

[30]  N. Ashcroft Electron-ion pseudopotentials in metals☆ , 1966 .

[31]  R. Stedman,et al.  Dispersion Relations for Phonons in Aluminum at 80 and 300°K , 1966 .

[32]  Lu J. Sham,et al.  General Theory of Pseudopotentials , 1962 .

[33]  C. Calandra,et al.  Third order perturbation theory and lattice dynamics of simple metals , 1974 .

[34]  M. Rasolt,et al.  A study of energy dependence and non locality in metallic pseudopotentials , 1973 .

[35]  Y. Waseda,et al.  Structure factor and atomic distribution in liquid metals by X‐ray diffraction , 1972 .