From the tabletop to the Big Bang: Analogue vacuum decay from vacuum initial conditions

Ultracold atomic gases can undergo phase transitions that mimic relativistic vacuum decay, allowing us to empirically test early-Universe physics in tabletop experiments. We investigate the physics of these analogue systems, going beyond previous analyses of the classical equations of motion to study quantum fluctuations in the cold-atom false vacuum. We show that the fluctuation spectrum of this vacuum state agrees with the usual relativistic result in the regime where the classical analogy holds, providing further evidence for the suitability of these systems for studying vacuum decay. Using a suite of semiclassical lattice simulations, we simulate bubble nucleation from this analogue vacuum state in a 1D homonuclear potassium-41 mixture, finding qualitative agreement with instanton predictions. We identify realistic parameters for this system that will allow us to study vacuum decay with current experimental capabilities, including a prescription for efficiently scanning over decay rates, and show that this setup will probe the quantum (rather than thermal) decay regime at temperatures $T\lesssim10\,\mathrm{nK}$. Our results help lay the groundwork for using upcoming cold-atom experiments as a new probe of nonperturbative early-Universe physics.

[1]  B. C. Joshi,et al.  The second data release from the European Pulsar Timing Array: V. Implications for massive black holes, dark matter and the early Universe , 2023, 2306.16227.

[2]  B. C. Joshi,et al.  The second data release from the European Pulsar Timing Array. III. Search for gravitational wave signals , 2023, Astronomy & Astrophysics.

[3]  Joseph P. Glaser,et al.  The NANOGrav 15 yr Data Set: Search for Signals from New Physics , 2023, The Astrophysical Journal Letters.

[4]  Joseph P. Glaser,et al.  The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background , 2023, The Astrophysical Journal Letters.

[5]  I. Carusotto,et al.  False vacuum decay via bubble formation in ferromagnetic superfluids , 2023, Nature Physics.

[6]  M. Borkowski,et al.  Active stabilization of kilogauss magnetic fields to the ppm level for magnetoassociation on ultranarrow Feshbach resonances. , 2023, The Review of scientific instruments.

[7]  I. Moss,et al.  Bubble nucleation in a cold spin 1 gas , 2022, New Journal of Physics.

[8]  J. Eisert,et al.  Experimental observation of curved light-cones in a quantum field simulator , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[9]  J. Hutson,et al.  Pinpointing Feshbach resonances and testing Efimov universalities in K39 , 2022, Physical Review Research.

[10]  H. Peiris,et al.  Mass renormalization in lattice simulations of false vacuum decay , 2022, Physical Review D.

[11]  A. Riotto,et al.  Bubble correlation in first-order phase transitions , 2021, Physical Review D.

[12]  Jonathan Braden,et al.  Bubble Clustering in Cosmological First Order Phase Transitions , 2021, 2109.04496.

[13]  N. Gaaloul,et al.  Collective-Mode Enhanced Matter-Wave Optics. , 2021, Physical review letters.

[14]  I. Moss,et al.  False-vacuum decay in an ultracold spin-1 Bose gas , 2021, Physical Review A.

[15]  M. Anderson,et al.  Accurate Determination of Hubble Attenuation and Amplification in Expanding and Contracting Cold-Atom Universes. , 2021, Physical review letters.

[16]  Robert P. Smith,et al.  –Einstein condensation for precision interferometry , 2022 .

[17]  M. Spannowsky,et al.  Quantum-Field-Theoretic Simulation Platform for Observing the Fate of the False Vacuum , 2021 .

[18]  P. Drummond,et al.  Fate of the False Vacuum: Finite Temperature, Entropy, and Topological Phase in Quantum Simulations of the Early Universe , 2020, 2010.08665.

[19]  Fabrizio Rompineve,et al.  Quantitative analysis of the stochastic approach to quantum tunneling , 2020, Physical Review D.

[20]  W. Valkenburg,et al.  The art of simulating the early universe. Part I. Integration techniques and canonical cases , 2020, 2006.15122.

[21]  I. Moss,et al.  Simulating cosmological supercooling with a cold-atom system , 2020, Physical Review A.

[22]  R. Hulet,et al.  Methods for preparing quantum gases of lithium. , 2019, The Review of scientific instruments.

[23]  H. Peiris,et al.  Nonlinear dynamics of the cold atom analog false vacuum , 2019, Journal of High Energy Physics.

[24]  R. Gregory,et al.  Simulating seeded vacuum decay in a cold atom system , 2018, Physical Review D.

[25]  H. Peiris,et al.  New Semiclassical Picture of Vacuum Decay. , 2018, Physical review letters.

[26]  H. Peiris,et al.  Towards the cold atom analog false vacuum , 2017, Journal of High Energy Physics.

[27]  R. Flauger,et al.  Robustness of inflation to inhomogeneous initial conditions , 2016, 1608.04408.

[28]  P. Drummond,et al.  The universe on a table top: engineering quantum decay of a relativistic scalar field from a metastable vacuum , 2016, 1607.01460.

[29]  Antoine Petiteau,et al.  Science with the space-based interferometer eLISA. II: gravitational waves from cosmological phase transitions , 2015, 1512.06239.

[30]  B. Opanchuk,et al.  Fate of the false vacuum: Towards realization with ultra-cold atoms , 2014, 1408.1163.

[31]  N. Goldman,et al.  Periodically Driven Quantum Systems: Effective Hamiltonians and Engineered Gauge Fields , 2014, 1404.4373.

[32]  S. Kokkelmans,et al.  Feshbach resonances in ultracold gases , 2014, 1401.2945.

[33]  Alessandro Strumia,et al.  Investigating the near-criticality of the Higgs boson , 2013, 1307.3536.

[34]  P. Drummond,et al.  Quantum simulations of the early universe , 2013, 1305.5314.

[35]  S. Cornish,et al.  Feshbach resonances in ultracold 85Rb. , 2012, 1212.5446.

[36]  Alexander L. Gaunt,et al.  Bose-Einstein condensation of atoms in a uniform potential. , 2012, Physical review letters.

[37]  E. Weinberg Classical Solutions in Quantum Field Theory: Solitons and Instantons in High Energy Physics , 2012 .

[38]  G. Degrassi,et al.  Higgs mass and vacuum stability in the Standard Model at NNLO , 2012, 1205.6497.

[39]  L. G. Boté,et al.  Laser Interferometer Space Antenna , 2012 .

[40]  M. Amin,et al.  Oscillons after inflation. , 2011, Physical review letters.

[41]  H. Peiris,et al.  First Observational Tests of Eternal Inflation: Analysis Methods and WMAP 7-Year Results , 2010, 1012.3667.

[42]  H. Peiris,et al.  First observational tests of eternal inflation. , 2010, Physical review letters.

[43]  M. Amin,et al.  Inflaton Fragmentation and Oscillon Formation in Three Dimensions , 2010, 1009.2505.

[44]  Marius Lysebo,et al.  Feshbach resonances and transition rates for cold homonuclear collisions between K 39 and K 41 atoms , 2010 .

[45]  A. Hoecker,et al.  Dark Matter Theory , 2009 .

[46]  R. Grimm,et al.  Determination of atomic scattering lengths from measurements of molecular binding energies near Feshbach resonances , 2008, 0810.5503.

[47]  C. W. Gardiner,et al.  Dynamics and statistical mechanics of ultra-cold Bose gases using c-field techniques , 2008, 0809.1487.

[48]  A. Aguirre Eternal Inflation, past and future , 2007, 0712.0571.

[49]  Assaf Shomer,et al.  Towards observable signatures of other bubble universes , 2007, 0704.3473.

[50]  A. Guth Eternal inflation and its implications , 2007, hep-th/0702178.

[51]  Steven Chu,et al.  Precision Feshbach Spectroscopy of Ultracold Cs-2 , 2004 .

[52]  C. Wieman,et al.  Very-high-precision bound-state spectroscopy near a 85Rb Feshbaeh resonance , 2003, cond-mat/0302195.

[53]  G. Rempe,et al.  Feshbach resonances in rubidium 87: precision measurement and analysis. , 2002, Physical review letters.

[54]  T. Fudge,et al.  The stochastic Gross-Pitaevskii equation , 2001, cond-mat/0112129.

[55]  E. Copeland,et al.  Electroweak preheating on a lattice , 2000, hep-ph/0012097.

[56]  Gary N. Felder,et al.  LATTICEEASY: A program for lattice simulations of scalar fields in an expanding universe , 2000, Comput. Phys. Commun..

[57]  D. Stamper-Kurn,et al.  Strongly Enhanced Inelastic Collisions in a Bose-Einstein Condensate near Feshbach Resonances , 1999, cond-mat/9901056.

[58]  R. Graham,et al.  DYNAMICAL QUANTUM NOISE IN TRAPPED BOSE-EINSTEIN CONDENSATES , 1998, cond-mat/9807349.

[59]  W. Ketterle,et al.  Observation of Feshbach resonances in a Bose–Einstein condensate , 1998, Nature.

[60]  Peter D. Drummond,et al.  Robust Algorithms for Solving Stochastic Partial Differential Equations , 1997 .

[61]  T. Prokopec,et al.  Lattice study of classical inflaton decay , 1996, hep-ph/9610400.

[62]  I. Tkachev,et al.  The Universe after inflation: the wide resonance case☆ , 1996, hep-ph/9608458.

[63]  I. Tkachev,et al.  Classical Decay of the Inflaton. , 1996, Physical review letters.

[64]  R. J. Crewther,et al.  Introduction to quantum field theory , 1995, hep-th/9505152.

[65]  Turner,et al.  Gravitational radiation from first-order phase transitions. , 1993, Physical review. D, Particles and fields.

[66]  Watkins,et al.  Gravitational radiation from colliding vacuum bubbles. , 1992, Physical review. D, Particles and fields.

[67]  H. Yoshida Construction of higher order symplectic integrators , 1990 .

[68]  R. Konoplich Decay of the false vacuum at finite temperature , 1989 .

[69]  H. Kodama,et al.  Abundance of Primordial Holes Produced by Cosmological First-Order Phase Transition , 1982 .

[70]  S. Hawking,et al.  Bubble collisions in the very early universe , 1982 .

[71]  S. Coleman,et al.  Gravitational Effects on and of Vacuum Decay , 1980 .

[72]  S. Coleman The Fate of the False Vacuum. 1. Semiclassical Theory , 1977 .

[73]  W. Valkenburg,et al.  CosmoLattice: A modern code for lattice simulations of scalar and gauge field dynamics in an expanding universe , 2023, Comput. Phys. Commun..

[74]  J. Heyl,et al.  Quantum simulation of expanding space – time with tunnel-coupled condensates , 2016 .

[75]  M. Dasgupta,et al.  An Introduction to Quantum Field Theory , 2007 .