On the significance of body mass and vibration magnitude for acceleration transmission of vibration through seats with horizontal suspensions

Abstract Seats with horizontal suspensions can help to reduce detrimental effects of whole-body vibration (WBV) on health, comfort and performance. Two seats were used to examine the effect of body mass and WBV-magnitude on the transmission of WBV from the seat base to the cushion. Both seats have suspension in the x-direction while Seat 2 has suspension also in the y-direction. Twelve subjects with a body mass ranging from 59.0 to 97.3 kg volunteered for the study. A set of anthropometric characteristics was acquired. Three magnitudes of WBV were used with a truck-like signal (Seat 1, 0.3–0.59 m s−2 wd-weighted rms values at the seat base, x-direction) and a tractor-like signal (Seat 2, 0.55–1.09 m s−2 wd-weighted rms values at the seat base, x-direction, 0.52–1.07 m s−2 wd-weighted rms values, y-direction). The magnitude of WBV had a significant effect on the transmissibility characterized by SEAT-values. A significant influence of the body mass on SEAT-values was found for the y-direction only. Other anthropometric characteristics proved to be more important for the prediction of SEAT values by multiple regressions. There was no significant correlation of SEAT-values, x-direction, with the body mass. Other anthropometric characteristics enabled a satisfactory prediction of SEAT values also for x-direction in several cases. Tests with only two subjects of extreme body mass are not suited to obtain comparable and representative results required for a comparison of different seats with a suspension in the x-direction. The effect of the WBV-magnitude on the WBV-transmissibility should be considered with the design, testing and application of suspended seats.