Advances in organic field-effect transistors

Since organic field-effect transistors (OFETs) were first described in 1987, they have undergone great progress, especially in the last several years. Nowadays, the performance of OFETs is similar to that of amorphous silicon (a-Si : H) devices and they have become one of the most important components of organic electronics. This feature article introduces briefly the operating principles, fabrication techniques of the transistors, and in particular highlights the recent progress, not only including materials and fabrication techniques, but also involving organic single crystal FETs and organic light-emitting FETs, which have been reported recently. Finally, the prospects and problems of OFETs that exist are discussed.

[1]  Guanzhong Wang,et al.  High mobility organic transistors fabricated from single pentacene microcrystals grown on a polymer film , 2003 .

[2]  G. Whitesides,et al.  Complex Optical Surfaces Formed by Replica Molding Against Elastomeric Masters , 1996, Science.

[3]  Dago M. de Leeuw,et al.  Field-effect transistors made from solution-processed organic semiconductors , 1997 .

[4]  Kock Yee. Law,et al.  Organic photoconductive materials: recent trends and developments , 1993 .

[5]  Zhenan Bao,et al.  Electronic sensing of vapors with organic transistors , 2001 .

[6]  Y. Kunugi,et al.  2,6-Diphenylbenzo[1,2-b:4,5-b']dichalcogenophenes: a new class of high-performance semiconductors for organic field-effect transistors. , 2004, Journal of the American Chemical Society.

[7]  Kent R. Mann,et al.  High Electron Mobility and Ambipolar Transport in Organic Thin‐Film Transistors Based on a π‐Stacking Quinoidal Terthiophene , 2003 .

[8]  G. Whitesides,et al.  Use of controlled reactive spreading of liquid alkanethiol on the surface of gold to modify the size of features produced by microcontact Printing , 1995 .

[9]  Dago M. de Leeuw,et al.  A universal relation between conductivity and field-effect mobility in doped amorphous organic semiconductors , 1994 .

[10]  Jonathan D. Raff,et al.  A π-Stacking Terthiophene-Based Quinodimethane Is an n-Channel Conductor in a Thin Film Transistor , 2002 .

[11]  Noo Li Jeon,et al.  Structure and Stability of Patterned Self-Assembled Films of Octadecyltrichlorosilane Formed by Contact Printing , 1997 .

[12]  Samson A Jenekhe,et al.  High electron mobility in ladder polymer field-effect transistors. , 2003, Journal of the American Chemical Society.

[13]  Rahul Sarpeshkar,et al.  Organic complementary ring oscillators , 1999 .

[14]  D. M. Leeuw,et al.  Stability of n-type doped conducting polymers and consequences for polymeric microelectronic devices , 1997 .

[15]  Tobin J Marks,et al.  Building blocks for n-type organic electronics: regiochemically modulated inversion of majority carrier sign in perfluoroarene-modified polythiophene semiconductors. , 2003, Angewandte Chemie.

[16]  Ute Zschieschang,et al.  High-mobility polymer gate dielectric pentacene thin film transistors , 2002 .

[17]  Takao Someya,et al.  Synthesis, assembly, and thin film transistors of dihydrodiazapentacene: an isostructural motif for pentacene. , 2003, Journal of the American Chemical Society.

[18]  Kai Xiao,et al.  Influence of the substrate temperature during deposition on film characteristics of copper phthalocyanine and field-effect transistor properties , 2003 .

[19]  W. Spear,et al.  Electronic Transport in Amorphous Silicon Films , 1970 .

[20]  Fumio Sato,et al.  Perfluoropentacene: high-performance p-n junctions and complementary circuits with pentacene. , 2004, Journal of the American Chemical Society.

[21]  H. Sirringhaus,et al.  A Highly π-Stacked Organic Semiconductor for Thin Film Transistors Based on Fused Thiophenes , 1998 .

[22]  Tomohiko Mori,et al.  Perfluorinated Oligo(p-Phenylene)s: Efficient n-Type Semiconductors for Organic Light-Emitting Diodes , 2000 .

[23]  Sampath Purushothaman,et al.  Field-effect transistors comprising molecular beam deposited α,ω-di-hexyl-hexathienylene and polymeric insulator , 1998 .

[24]  Torahiko Ando,et al.  Field-effect transistor with polythiophene thin film , 1987 .

[25]  John A. Rogers,et al.  Monolithically integrated, flexible display of polymer-dispersed liquid crystal driven by rubber-stamped organic thin-film transistors , 2001 .

[26]  George M. Whitesides,et al.  Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ‘‘ink’’ followed by chemical etching , 1993 .

[27]  R. Cava,et al.  Intrinsic electronic transport properties of organic field-effect transitors based on single crystalline tetramethyltetraselenafulvalene , 2003 .

[28]  Zhenan Bao,et al.  Complementary circuits with organic transistors , 1996 .

[29]  Gerwin H. Gelinck,et al.  High-performance all-polymer integrated circuits , 2000 .

[30]  Ali Afzali,et al.  High-performance, solution-processed organic thin film transistors from a novel pentacene precursor. , 2002, Journal of the American Chemical Society.

[31]  Oana D. Jurchescu,et al.  Effect of impurities on the mobility of single crystal pentacene , 2004, cond-mat/0404130.

[32]  Zhenan Bao,et al.  Organic field‐effect transistors with high mobility based on copper phthalocyanine , 1996 .

[33]  J. Jacobson,et al.  An electrophoretic ink for all-printed reflective electronic displays , 1998, Nature.

[34]  Luisa Torsi,et al.  Organic field-effect bipolar transistors , 1996 .

[35]  C. Dimitrakopoulos,et al.  Organic Thin Film Transistors for Large Area Electronics , 2002 .

[36]  Stephen R. Forrest,et al.  Giant anisotropies in the dielectric properties of quasi‐epitaxial crystalline organic semiconductor thin films , 1991 .

[37]  I. Lévesque,et al.  Organic field effect transistors based on modified oligo-p-phenylevinylenes , 2004 .

[38]  R. Sarpeshkar,et al.  Large-scale complementary integrated circuits based on organic transistors , 2000, Nature.

[39]  Gilles Horowitz,et al.  An analytical model for organic‐based thin‐film transistors , 1991 .

[40]  Thomas N. Jackson,et al.  Temperature-independent transport in high-mobility pentacene transistors , 1998 .

[41]  D.B.M. Klaassen,et al.  PRECURSOR ROUTE PENTACENE METAL-INSULATOR-SEMICONDUCTOR FIELD-EFFECT TRANSISTORS , 1996 .

[42]  Heinz von Seggern,et al.  Light emission from a polymer transistor , 2004 .

[43]  Gilles Horowitz,et al.  A field-effect transistor based on conjugated alpha-sexithienyl , 1989 .

[44]  C. D. Sheraw,et al.  Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates , 2002 .

[45]  Debra J. Mascaro,et al.  Organic thin-film transistors: A review of recent advances , 2001, IBM J. Res. Dev..

[46]  Gilles Horowitz,et al.  Organic Field‐Effect Transistors , 1998 .

[47]  Gilles Horowitz,et al.  Structural basis for high carrier mobility in conjugated oligomers , 1991 .

[48]  M. Berggren,et al.  Conductivity-type anisotropy in molecular solids , 1997 .

[49]  John E. Anthony,et al.  Functionalized Pentacene Active Layer Organic Thin‐Film Transistors , 2003 .

[50]  Alessandro Curioni,et al.  N-type organic thin-film transistor with high field-effect mobility based on a N,N′-dialkyl-3,4,9,10-perylene tetracarboxylic diimide derivative , 2002 .

[51]  P. Siciliano,et al.  Langmuir−Blodgett Multilayers Based on Copper Phthalocyanine as Gas Sensor Materials: Active Layer−Gas Interaction Model and Conductivity Modulation , 1997 .

[52]  H. Tada,et al.  Visible light emission from polymer-based field-effect transistors , 2004 .

[53]  B. Servet,et al.  Molecular engineering of organic semiconductors: design of self-assembly properties in conjugated thiophene oligomers , 1993 .

[54]  L. Torsi,et al.  Organic Transistors: Two-Dimensional Transport and Improved Electrical Characteristics , 1995, Science.

[55]  Zhenan Bao,et al.  New Air-Stable n-Channel Organic Thin Film Transistors , 1998 .

[56]  Heinz von Seggern,et al.  Light-emitting field-effect transistor based on a tetracene thin film. , 2003, Physical review letters.

[57]  E. Cantatore,et al.  Plastic transistors in active-matrix displays , 2001, Nature.

[58]  C. Dimitrakopoulos,et al.  Photosensitive Pentacene Precursor: Synthesis, Photothermal Patterning, and Application in Thin‐Film Transistors , 2003 .

[59]  T. Jackson,et al.  Stacked pentacene layer organic thin-film transistors with improved characteristics , 1997, IEEE Electron Device Letters.

[60]  C. Rovira,et al.  High mobility of dithiophene-tetrathiafulvalene single-crystal organic field effect transistors. , 2004, Journal of the American Chemical Society.

[61]  Zhenan Bao,et al.  The Physical Chemistry of Organic Field-Effect Transistors , 2000 .

[62]  Klaus Müllen,et al.  A Soluble Pentacene Precursor: Synthesis, Solid‐State Conversion into Pentacene and Application in a Field‐Effect Transistor , 1999 .

[63]  Zhenan Bao,et al.  Soluble and processable regioregular poly(3‐hexylthiophene) for thin film field‐effect transistor applications with high mobility , 1996 .

[64]  G. Whitesides,et al.  Polymer microstructures formed by moulding in capillaries , 1995, Nature.

[65]  D. V. Lang,et al.  Field-effect transistor on pentacene single crystal , 2003 .

[66]  J. Rogers,et al.  Elastomeric Transistor Stamps: Reversible Probing of Charge Transport in Organic Crystals , 2004, Science.

[67]  Ute Zschieschang,et al.  Relationship Between Molecular Structure and Electrical Performance of Oligothiophene Organic Thin Film Transistors , 2003 .

[68]  A. Facchetti,et al.  Easily processable phenylene-thiophene-based organic field-effect transistors and solution-fabricated nonvolatile transistor memory elements. , 2003, Journal of the American Chemical Society.

[69]  Rahul Sarpeshkar,et al.  Design and fabrication of organic complementary circuits , 2001 .

[70]  H. Sirringhaus,et al.  Tuning the Semiconducting Properties of Sexithiophene by α,ω‐Substitution—α,ω‐Diperfluorohexylsexithiophene: The First n‐Type Sexithiophene for Thin‐Film Transistors , 2000 .

[71]  H. Sirringhaus,et al.  Integrated optoelectronic devices based on conjugated polymers , 1998, Science.

[72]  G. Horowitz,et al.  Mobility in Polycrystalline Oligothiophene Field‐Effect Transistors Dependent on Grain Size , 2000 .

[73]  C. M. Hart,et al.  Low-cost all-polymer integrated circuits , 1998, Proceedings of the 24th European Solid-State Circuits Conference.

[74]  T. Jackson,et al.  Pentacene organic thin-film transistors-molecular ordering and mobility , 1997, IEEE Electron Device Letters.

[75]  Christos D. Dimitrakopoulos,et al.  Molecular beam deposited thin films of pentacene for organic field effect transistor applications , 1996 .

[76]  Theo Siegrist,et al.  Tetramethylpentacene: Remarkable Absence of Steric Effect on Field Effect Mobility , 2003 .