Symmetry Breaking and Other Phenomena in the Optimization of Eigenvalues for Composite Membranes

Abstract: We consider the following eigenvalue optimization problem: Given a bounded domain Ω⊂ℝ and numbers α > 0, A∈[ 0, |Ω|], find a subset D⊂Ω of area A for which the first Dirichlet eigenvalue of the operator −Δ+αχD is as small as possible.We prove existence of solutions and investigate their qualitative properties. For example, we show that for some symmetric domains (thin annuli and dumbbells with narrow handle) optimal solutions must possess fewer symmetries than Ω on the other hand, for convex Ω reflection symmetries are preserved.Also, we present numerical results and formulate some conjectures suggested by them.

[1]  Steven J. Cox,et al.  Extremal eigenvalue problems for composite membranes, II , 1990 .

[2]  I. Herbst,et al.  Strong magnetic fields, Dirichlet boundaries, and spectral gaps , 1995 .

[3]  B. Kawohl On the location of maxima of the gradient for solutions to quasilinear elliptic problems and a problem raised by Saint Venant , 1987 .

[4]  E. Lieb,et al.  On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation , 1976 .

[5]  V. Komkov Optimal shape design for elliptic systems , 1986 .

[6]  I. Chavel Eigenvalues in Riemannian geometry , 1984 .

[7]  E. Hopf Über den funktionalen, insbesondere den analytischen Charakter der Lösungen elliptischer Differentialgleichungen zweiter Ordnung , 1932 .

[8]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[9]  Steven J. Cox,et al.  The two phase drum with the deepest bass note , 1991 .

[10]  Evans M. Harrell,et al.  On the Placement of an Obstacle or a Well so as to Optimize the Fundamental Eigenvalue , 2001, SIAM J. Math. Anal..

[11]  SchröDinger operators - geometric estimates in terms of the occupation time , 1995 .

[12]  E. Harrell,et al.  Maximal and minimal eigenvalues and their associated nonlinear equations , 1987 .

[13]  Henrik Egnell Extremal properties of the first eigenvalue of a class of elliptic eigenvalue problems , 1987 .

[14]  O. H. Lowry Academic press. , 1972, Analytical chemistry.

[15]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[16]  Jean-Pierre Gossez,et al.  Strict Monotonicity of Eigenvalues and Unique Continuation , 1992 .

[17]  Christa Wolf,et al.  Unter den Linden , 1975 .

[18]  John L. Lewis,et al.  Convex solutions of certain elliptic equations have constant rank hessians , 1987 .

[19]  B. M. Fulk MATH , 1992 .

[20]  C. B. Morrey On the Analyticity of the Solutions of Analytic Non-Linear Elliptic Systems of Partial Differential Equations: Part II. Analyticity at the Boundary , 1958 .

[21]  Steven J. Cox,et al.  Extremal eigenvalue problems for two-phase conductors , 1996 .

[22]  William P. Ziemer,et al.  Minimal rearrangements of Sobolev functions. , 1987 .

[23]  R. Benguria,et al.  A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions , 1992 .

[24]  Steven J. Cox,et al.  Extremal eigenvalue problems for composite membranes, I , 1990 .

[25]  Luis A. Caffarelli,et al.  Convexity properties of solutions to some classical variational problems , 1982 .