Carbonation of cement-based materials: Challenges and opportunities

Abstract This article summarizes the existing knowledge regarding the carbonation of cement-based materials and identified the areas which require further investigations. Available studies regarding the carbonation test scenarios, influences of supplementary cementitious materials (SCMs) on carbonation resistance, and effects of carbonation on the properties of cement-based materials are reviewed here. In addition to ordinary portland cement (OPC) based materials, this article has reviewed the performances of sulfoaluminate belite and alkali activated materials (AAM) while subjected to carbonations. Some very recent topics such as the potential of CO 2 storage in concrete and the newly developed carbonate binders are also discussed.

[1]  Christopher M. Dobson,et al.  Progressive Changes in the Structure of Hardened C3S Cement Pastes due to Carbonation , 1991 .

[2]  Jay G. Sanjayan,et al.  Resistance of alkali-activated slag concrete to carbonation , 2001 .

[3]  Jack M. Chi,et al.  Effects of Carbonation on Mechanical Properties and Durability of Concrete Using Accelerated Testing Method , 2002 .

[4]  R. L. Berger,et al.  Reactivity and strength development of CO2 activated non-hydraulic calcium silicates , 1979 .

[5]  Adam R. Kilcullen,et al.  Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated , 2013 .

[6]  Salih Yazicioglu,et al.  The influence of compaction pores on sorptivity and carbonation of concrete , 2007 .

[7]  Patrick Dangla,et al.  Investigation of the Carbonation Front Shape on Cementitious Materials: Effects of the Chemical Kinetics , 2007 .

[8]  I. Richardson,et al.  The carbonation of hardened cement pastes , 1990 .

[9]  Zaid Ghouleh,et al.  Reaction Products in Carbonation-Cured Lightweight Concrete , 2013 .

[10]  Cyril J. Lynsdale,et al.  Strength, permeability, and carbonation of high-performance concrete , 2002 .

[11]  Jay G. Sanjayan,et al.  Resistance of alkali-activated slag concrete to acid attack , 2003 .

[12]  Michael N. Fardis,et al.  FUNDAMENTAL MODELING AND EXPERIMENTAL INVESTIGATION OF CONCRETE CARBONATION , 1991 .

[13]  Mark G. Richardson,et al.  Carbonation of reinforced concrete: Its causes and management , 1988 .

[14]  P. Mondal,et al.  Effects of incorporating nanosilica on carbonation of cement paste , 2015, Journal of Materials Science.

[15]  Nele De Belie,et al.  Carbonation of slag concrete: Effect of the cement replacement level and curing on the carbonation coefficient – Effect of carbonation on the pore structure , 2013 .

[16]  Jan Olek,et al.  Carbonation behavior of hydraulic and non-hydraulic calcium silicates: potential of utilizing low-lime calcium silicates in cement-based materials , 2016, Journal of Materials Science.

[17]  N. Thom,et al.  Carbonation of filler typed self-compacting concrete and its impact on the microstructure by utilization of 100% CO2 accelerating techniques , 2014 .

[18]  Peiyu Yan,et al.  Natural and accelerated carbonation of concrete containing fly ash and GGBS after different initial curing period , 2012 .

[19]  Anthony J. Tarquin,et al.  Role of Carbonation in Transient Leaching of Cementitious Wasteforms , 1997 .

[20]  Jianan Zhao,et al.  Factory-level measurements on CO2 emission factors of cement production in China , 2014 .

[21]  Xin Cheng,et al.  Carbonation resistance of sulphoaluminate cement-based high performance concrete , 2009 .

[22]  D. D. Molin,et al.  Carbonation-induced reinforcement corrosion in silica fume concrete , 2009 .

[23]  N. Neithalath,et al.  Synthesis and properties of a novel structural binder utilizing the chemistry of iron carbonation. , 2014, ACS Applied Materials and Interfaces.

[24]  C. Atiş ACCELERATED CARBONATION AND TESTING OF CONCRETE MADE WITH FLY ASH , 2003 .

[25]  E. Garcia-Diaz,et al.  Studying the hardening and mechanical performances of rice husk and hemp-based building materials cured under natural and accelerated carbonation. , 2015 .

[26]  V. Morales-Flórez,et al.  Changes on the nanostructure of cementitius calcium silicate hydrates (C–S–H) induced by aqueous carbonation , 2011, Journal of Materials Science.

[27]  Sean Monkman,et al.  Integration of carbon sequestration into curing process of precast concrete , 2010 .

[28]  Daman K. Panesar,et al.  Accelerated carbonation – A potential approach to sequester CO2 in cement paste containing slag and reactive MgO , 2013 .

[29]  Jeffrey J. Thomas,et al.  Effect of carbonation on the nitrogen BET surface area of hardened portland cement paste , 1996 .

[30]  Jing Wen Chen,et al.  Strength and Elastic Modulus of Carbonated Concrete , 2005 .

[31]  Marta Castellote,et al.  Chemical changes and phase analysis of OPC pastes carbonated at different CO2 concentrations , 2009 .

[32]  Maurizio Taliano,et al.  Comparison of carbonation depths measured on in-field exposed existing r.c. structures with predictions made using fib-Model Code 2010 , 2013 .

[33]  R. D. T. Filho,et al.  The effects of the early carbonation curing on the mechanical and porosity properties of high initial strength Portland cement pastes , 2015 .

[34]  Hui-sheng Shi,et al.  Influence of mineral admixtures on compressive strength, gas permeability and carbonation of high performance concrete , 2009 .

[35]  Andrew J. Boyd,et al.  Carbonation Curing versus Steam Curing for Precast Concrete Production , 2012 .

[36]  M. Cheyrezy,et al.  Concrete carbonation tests in natural and accelerated conditions , 2003 .

[37]  N. Neithalath,et al.  Flexural fracture response of a novel iron carbonate matrix – Glass fiber composite and its comparison to Portland cement-based composites , 2015 .

[38]  Patrick Dangla,et al.  Investigation of the carbonation mechanism of \{CH\} and C-S-H in terms of kinetics, microstructure changes and moisture properties , 2014 .

[39]  Alain Sellier,et al.  COUPLED MOISTURE-CARBON DIOXIDE-CALCIUM TRANSFER MODEL FOR CARBONATION OF CONCRETE , 2004 .

[40]  J. Brito,et al.  An overview on concrete carbonation in the context of eco-efficient construction: Evaluation, use of SCMs and/or RAC , 2012 .

[41]  D. Panesar,et al.  Properties of binary and ternary reactive MgO mortar blends subjected to CO2 curing , 2013 .

[42]  Erez N. Allouche,et al.  Corrosion of steel bars induced by accelerated carbonation in low and high calcium fly ash geopolymer concretes , 2014 .

[43]  J. F. Young,et al.  Accelerated Curing of Compacted Calcium Silicate Mortars on Exposure to CO2 , 1974 .

[44]  Michael N. Fardis,et al.  Hydration and Carbonation of Pozzolanic Cements , 1992 .

[45]  E. Reardon,et al.  High pressure carbonation of cementitious grout , 1989 .

[46]  C. Hills,et al.  The effect of carbon dioxide on β-dicalcium silicate and Portland cement , 2006 .

[47]  Ahmed Loukili,et al.  Performance-based design and carbonation of concrete with high fly ash content , 2011 .

[48]  C. Andrade,et al.  Natural and accelerated CO2 binding kinetics in cement paste at different relative humidities , 2013 .

[49]  M. Fardis,et al.  Physical and Chemical Characteristics Affecting the Durability of Concrete , 1991 .

[50]  Kevin Paine,et al.  Performance characteristics of concrete based on a ternary calcium sulfoaluminate–anhydrite–fly ash cement , 2015 .

[51]  S. Wong,et al.  Carbonation of Concrete Containing Mineral Admixtures , 2003 .

[52]  Paulo J.M. Monteiro,et al.  Incorporating carbon sequestration materials in civil infrastructure: A micro and nano-structural analysis , 2013 .

[53]  L. De Ceukelaire,et al.  ACCELERATED CARBONATION OF A BLAST-FURNACE CEMENT CONCRETE , 1993 .

[54]  Sulapha Peethamparan,et al.  Quantification of CO 2 sequestration capacity and carbonation rate of alkaline industrial byproducts , 2015 .

[55]  Vute Sirivivatnanon,et al.  Carbonate binders: Reaction kinetics, strength and microstructure , 2006 .

[56]  John S Gierke,et al.  Carbon dioxide sequestration in cement kiln dust through mineral carbonation. , 2009, Environmental science & technology.

[57]  J. Deventer,et al.  MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders , 2014 .

[58]  Peter A. Claisse,et al.  Permeability and pore volume of carbonated concrete , 1999 .

[59]  R. L. Berger,et al.  Accelerated curing of cementitious systems by carbon dioxide: Part II. Hydraulic calcium silicates and aluminates , 1972 .

[60]  A. Sellier,et al.  Accelerated carbonation tests for the probabilistic prediction of the durability of concrete structures , 2014 .

[61]  Subhasis Ghoshal,et al.  CO2 Sequestration in Concrete through Accelerated Carbonation Curing in a Flow-through Reactor , 2010 .

[62]  R. Zevenhoven,et al.  Carbon dioxide sequestration by mineral carbonation Literature review update 2005-2007 , 2008 .

[63]  Ana Paula Kirchheim,et al.  Comparative study of white and ordinary concretes with respect of carbonation and water absorption , 2015 .

[64]  K. Sisomphon,et al.  Carbonation rates of concretes containing high volume of pozzolanic materials , 2007 .

[65]  J. Skibsted,et al.  Carbonation of C–S–H and C–A–S–H samples studied by 13C, 27Al and 29Si MAS NMR spectroscopy , 2015 .

[66]  Jun Chang,et al.  Microstructure changes of waste hydrated cement paste induced by accelerated carbonation , 2015 .

[67]  Zaid Ghouleh,et al.  Carbon dioxide activated ladle slag binder , 2014 .

[68]  S. Martínez-Ramírez,et al.  Carbonation of ternary cement systems , 2012 .

[69]  Yixin Shao,et al.  Carbon Storage through Concrete Block Carbonation , 2014 .

[70]  Klaus S. Lackner,et al.  Carbon Dioxide Sequestering Using Ultramafic Rocks , 1998 .

[71]  J. Olek,et al.  Nanomechanical Characterization of the Carbonated Wollastonite System , 2015 .

[72]  A. Aït‐Mokhtar,et al.  Accelerated carbonation of concrete with high content of mineral additions: Effect of interactions between hydration and drying , 2013 .

[73]  Y. F. Houst,et al.  Depth Profiles of Carbonates Formed During Natural Carbonation , 2002 .

[74]  Seung-Jun Kwon,et al.  Permeability Characteristics of Carbonated Concrete Considering Capillary Pore Structure , 2007 .

[75]  Y. Chen,et al.  Accelerated carbonation of basic oxygen furnace slag and the effects on its mechanical properties , 2015 .

[76]  A. Boyd,et al.  Durability of concrete pipes subjected to combined steam and carbonation curing , 2011 .

[77]  F. Puertas,et al.  Carbonation process of alkali-activated slag mortars , 2006 .

[78]  R. L. Berger Stabilization of silicate structures by carbonation , 1979 .

[79]  S. Tangtermsirikul,et al.  A study on carbonation depth prediction for fly ash concrete , 2006 .

[80]  L. Lange,et al.  The effect of accelerated carbonation on the properties of cement-solidified waste forms , 1996 .

[81]  S. Goñi,et al.  Role of Cement Type on Carbonation Attack , 2002 .

[82]  E. G. Swenson,et al.  Mechanism of the carbonatation shrinkage of lime and hydrated cement , 2007 .

[83]  Keith Quillin,et al.  Performance of belite–sulfoaluminate cements , 2001 .

[84]  W. Müller-Warmuth,et al.  MAS NMR Studies of Partially Carbonated Portland Cement and Tricalcium Silicate Pastes , 1993 .

[85]  Stefaan J. R. Simons,et al.  Kinetic study of accelerated carbonation of municipal solid waste incinerator air pollution control residues for sequestration of flue gas CO2 , 2008 .

[86]  Liv Haselbach,et al.  An Alternative Mechanism for Accelerated Carbon Sequestration in Concrete , 2014 .

[87]  Ravindra K. Dhir,et al.  Concrete containing ternary blended binders: Resistance to chloride ingress and carbonation , 1997 .

[88]  C. Shi,et al.  CEMENTITIOUS PROPERTIES OF LADLE SLAG FINES UNDER AUTOCLAVE CURING CONDITIONS , 2003 .

[89]  F. Puertas,et al.  Effect of Carbonation on Alkali‐Activated Slag Paste , 2006 .

[90]  V. Sirivivatnanon,et al.  Chemical, Microstructural and Strength Development of Calcium and Magnesium Carbonate Binders , 2009 .

[91]  C. Mügler,et al.  Simplified modelling and numerical simulations of concrete carbonation in unsaturated conditions , 2006 .

[92]  Patrick Dangla,et al.  Impact of accelerated carbonation on OPC cement paste blended with fly ash , 2015 .

[93]  Linhua Jiang,et al.  A model for predicting carbonation of high-volume fly ash concrete , 2000 .

[94]  Feng Xing,et al.  Experimental study on effects of CO2 concentrations on concrete carbonation and diffusion mechanisms , 2015 .

[95]  Y. F. Houst Carbonation Shrinkage of Hydrated Cement Paste , 1997 .

[96]  Renato Vitaliani,et al.  2 — D model for carbonation and moisture/heat flow in porous materials , 1995 .

[97]  J. Yarwood,et al.  Structural Features of C–S–H(I) and Its Carbonation in Air—A Raman Spectroscopic Study. Part II: Carbonated Phases , 2007 .

[98]  Y. F. Houst,et al.  Influence of porosity and water content on the diffusivity of CO2 and O2 through hydrated cement paste , 1994 .

[99]  C. Page,et al.  The pore solution phase of carbonated cement pastes , 2005 .

[100]  A. Aït‐Mokhtar,et al.  Analysis of an accelerated carbonation test with severe preconditioning , 2014 .

[101]  Klaus S. Lackner,et al.  A Guide to CO2 Sequestration , 2003, Science.

[102]  Y. Shao,et al.  Mathematical modeling of CO2 uptake by concrete during accelerated carbonation curing , 2015 .

[103]  S. A. Bernal The resistance of alkali-activated cement-based binders to carbonation , 2015 .

[104]  J. Bensted Raman spectral studies of carbonation phenomena , 1977 .

[105]  A. Boyd,et al.  Recycling carbon dioxide into concrete: a feasibility study , 2010 .

[106]  R. K. Dhir,et al.  Near-surface characteristics of concrete: prediction of carbonation resistance , 1989 .

[107]  Takayuki Higuchi,et al.  Development of a new ecological concrete with CO2 emissions below zero , 2014 .

[108]  Chi Sun Poon,et al.  CO2 curing for improving the properties of concrete blocks containing recycled aggregates , 2013 .

[109]  Carlos García,et al.  Microstructural changes induced in Portland cement-based materials due to natural and supercritical carbonation , 2008 .

[110]  C. Page,et al.  Effects of carbonation on pore structure and diffusional properties of hydrated cement pastes , 1997 .

[111]  A. Morandeau,et al.  In situ X-ray pair distribution function analysis of accelerated carbonation of a synthetic calcium-silicate-hydrate gel , 2015 .

[112]  R. Feldman,et al.  Length change characteristics of Ca(OH)2 compacts on exposure to water vapour , 2007 .

[113]  Michael N. Fardis,et al.  Effect of composition, environmental factors and cement-lime mortar coating on concrete carbonation , 1992 .

[114]  D. Moorehead,et al.  Carbonate binders by “cold sintering” of calcium carbonate , 2007 .

[115]  Minoru Fukuhara,et al.  Calcium Silicate Carbonation Products , 1995 .

[116]  Alan B. Poole,et al.  Effect of carbonation on properties of blended and non-blended cement solidified waste forms , 1997 .

[117]  D. Northwood,et al.  Durability of concrete—accelerated carbonation and weathering studies , 1999 .

[118]  Jinxia Xu,et al.  Influence of carbonation on chloride-induced reinforcement corrosion in simulated concrete pore solutions , 2014 .

[119]  S. E. Pihlajavaara,et al.  Some results of the effect of carbonation on the porosity and pore size distribution of cement paste , 1968 .

[120]  Carmen Andrade,et al.  Sequestration of CO2 by concrete carbonation. , 2010, Environmental science & technology.

[121]  John L. Provis,et al.  Accelerated carbonation testing of alkali-activated slag/metakaolin blended concretes: effect of exposure conditions , 2015 .

[122]  Daman K. Panesar,et al.  Effects of accelerated carbonation on the microstructure of Portland cement pastes containing reactive MgO , 2012 .

[123]  Jing Wen Chen,et al.  The experimental investigation of concrete carbonation depth , 2006 .

[124]  S. Millard,et al.  An accelerated carbonation procedure for studies on concrete , 1996 .

[125]  B. Johannesson,et al.  Microstructural changes caused by carbonation of cement mortar , 2001 .

[126]  S. Martínez-Ramírez,et al.  Carbonation of ternary building cementing materials , 2012 .

[127]  Susan A. Bernal,et al.  Effect of the activator dose on the compressive strength and accelerated carbonation resistance of alkali silicate-activated slag/metakaolin blended materials , 2015 .

[128]  L. Haselbach,et al.  Carbon sequestration in concrete sidewalk samples , 2014 .

[129]  A. Licciulli,et al.  In-situ carbonation of alkali activated fly ash geopolymer , 2014 .

[130]  Hamlin M. Jennings,et al.  Decalcification shrinkage of cement paste , 2006 .

[131]  Michael N. Fardis,et al.  A reaction engineering approach to the problem of concrete carbonation , 1989 .

[132]  Claus Pade,et al.  The CO2 Uptake of Concrete in a 100 Year Perspective , 2007 .

[133]  J. F. Young,et al.  Reaction of Hydraulic Calcium Silicates with Carbon Dioxide and Water , 1979 .

[134]  A. Boyd,et al.  Microstructure of cement paste subject to early carbonation curing , 2012 .

[135]  A. Sellier,et al.  Dependency of C–S–H carbonation rate on CO2 pressure to explain transition from accelerated tests to natural carbonation , 2010 .

[136]  A. Olajire A review of mineral carbonation technology in sequestration of CO2 , 2013 .

[137]  R. Cuscó,et al.  Hydration and carbonation of monoclinic C2S and C3S studied by Raman spectroscopy , 2007 .

[138]  L. Parrott A REVIEW OF CARBONATION IN REINFORCED CONCRETE , 1987 .

[139]  S. Simons,et al.  A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2. , 2004, Journal of hazardous materials.

[140]  Shu-Yuan Pan,et al.  CO2 Capture by Accelerated Carbonation of Alkaline Wastes: A Review on Its Principles and Applications , 2012 .

[141]  R. L. Berger,et al.  Acceleration of Hydration of Calcium Silicates by Carbon Dioxide Treatment , 1972 .

[142]  A. Leemann,et al.  Relation between carbonation resistance, mix design and exposure of mortar and concrete , 2015 .

[143]  C. Unluer,et al.  The role of brucite, ground granulated blastfurnace slag, and magnesium silicates in the carbonation and performance of MgO cements , 2015 .

[144]  Fernando A. Branco,et al.  Field assessment of the relationship between natural and accelerated concrete carbonation resistance , 2013 .

[145]  Koichi Maekawa,et al.  Theoretically Identified Strong Coupling of Carbonation Rate and Thermodynamic Moisture States in Micropores of Concrete , 2004 .

[146]  U. Jäglid,et al.  Carbonation of Portland Cement Studied by Diffuse Reflection Fourier Transform Infrared Spectroscopy , 2013, International Journal of Concrete Structures and Materials.

[147]  S. Chakraborty,et al.  Effectiveness of carbonated lime as a raw material in producing a CO2-stored cementitious material by the hydrothermal method , 2015 .

[148]  John L. Provis,et al.  Accelerated carbonation testing of alkali-activated binders significantly underestimates service lif , 2012 .

[149]  C. Unluer,et al.  Enhancing the carbonation of MgO cement porous blocks through improved curing conditions , 2014 .

[150]  V. Rose,et al.  Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags , 2010 .