In-situ neutron diffraction during reversible deuterium loading in Ti-rich and Mn-substituted Ti(Fe,Mn)0.90 alloys

[1]  M. Hirscher,et al.  Research and development of hydrogen carrier based solutions for hydrogen compression and storage , 2022, Progress in Energy.

[2]  F. Cuevas,et al.  TiFe0.85Mn0.05 alloy produced at industrial level for a hydrogen storage plant , 2022, International Journal of Hydrogen Energy.

[3]  M. Hirscher,et al.  Magnesium- and intermetallic alloys-based hydrides for energy storage: modelling, synthesis and properties , 2022 .

[4]  N. Berti,et al.  Substitutional effects in TiFe for hydrogen storage: a comprehensive review , 2021, Materials Advances.

[5]  M. Latroche,et al.  Hydrogen storage properties of Mn and Cu for Fe substitution in TiFe0.9 intermetallic compound , 2020, Journal of Alloys and Compounds.

[6]  M. Latroche,et al.  Fundamental hydrogen storage properties of TiFe-alloy with partial substitution of Fe by Ti and Mn , 2020, 2012.00354.

[7]  M. Latroche,et al.  Fundamental hydrogen storage properties of TiFe-alloy with partial substitution of Fe by Ti and Mn - Dataset related to publication , 2020 .

[8]  S. Suwarno,et al.  Metal (boro-) hydrides for high energy density storage and relevant emerging technologies , 2020, 2010.04432.

[9]  D. Gregory,et al.  Metal Hydrides and Related Materials. Energy Carriers for Novel Hydrogen and Electrochemical Storage , 2020, The Journal of Physical Chemistry C.

[10]  Z. Pan,et al.  An overview on TiFe intermetallic for solid-state hydrogen storage: microstructure, hydrogenation and fabrication processes , 2020, Critical Reviews in Solid State and Materials Sciences.

[11]  HyCARE focuses on large-scale, solid-state hydrogen storage , 2019, Fuel Cells Bulletin.

[12]  Alan A. Coelho,et al.  TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++ , 2018 .

[13]  Yumiko Nakamura,et al.  Hydrogenation of a TiFe-based alloy at high pressures and temperatures , 2015 .

[14]  A. Boukraa,et al.  Ab-initio structural and electronic properties of the intermetallic compound TiFeH2 , 2015 .

[15]  purewal purewal Hydrogen Storage Materials , 2014 .

[16]  C. Leinenbach,et al.  Thermodynamic re-assessment of Fe−Ti binary system , 2012 .

[17]  Alper Kinaci,et al.  Ab initio investigation of FeTi–H system , 2007 .

[18]  R. Young,et al.  The Rietveld method , 2006 .

[19]  H. Yukawa,et al.  Electronic structure and hydriding property of titanium compounds with CsCl-type structure , 1999 .

[20]  J. M. Hastings,et al.  The application of the Rietveld method to a highly strained material with microtwins: TiFeD1.9 , 1989 .

[21]  Bao Deyou,et al.  NEUTRON DIFFRACTION STUDY OF α-IRON TITANIUM CERIUM HYDRIDE , 1987 .

[22]  J. Cantrell,et al.  Comparison of structures and electronic properties between TiCoHx and TiFeHx , 1987 .

[23]  L. Schlapbach,et al.  Orthorhombic structure of γ-TiFeD≈2 , 1987 .

[24]  S. Ikeda,et al.  Wide-energy-range, high-resolution measurements of neutron pulse shapes of polyethylene moderators , 1985 .

[25]  G. Sicking Isotope effects in metal-hydrogen systems , 1984 .

[26]  Louis Schlapbach,et al.  Hydrogen in Intermetallic Compounds , 1983 .

[27]  J. Lynch,et al.  CORRIGENDUM: An x-ray diffraction examination of the FeTi-H2 system , 1982 .

[28]  A. Rouault,et al.  Structural and activation process studies of FeTi-like hydride compounds☆ , 1980 .

[29]  W. Schäfer,et al.  Transmission electron microscopy and neutron diffraction studies of Feti-H(D)☆ , 1980 .

[30]  J. R. Johnson,et al.  Lattice expansion as a measure of surface segregation and the solubility of hydrogen in α-FeTiHx , 1980 .

[31]  D. Dew-Hughes The addition of Mn and Al to the hydriding compound FeTi: Range of homogeneity and lattice parameters , 1980 .

[32]  G. Will,et al.  Neutron and electron diffraction of the FeTi D(H) - γ - phase , 1980 .

[33]  J. M. Hastings,et al.  Neutron diffraction study of α-iron titanium deuteride , 1980 .

[34]  L. Schlapbach,et al.  Structural phase transitions of FeTi-deuterides , 1979 .

[35]  J. M. Hastings,et al.  Neutron diffraction study of gamma iron titanium deuteride , 1979 .

[36]  W. Schäfer,et al.  Investigation of TiFe Deuteride Structures by Means of Neutron Powder Diffraction and the Mössbauer Effect , 1979 .

[37]  L. Schlapbach,et al.  Hydrogen storage in FeTi: Surface segregation and its catalytic effect on hydrogenation and structural studies by means of neutron diffraction , 1979 .

[38]  P. Fischer,et al.  Deuterium storage in FeTi. Measurement of desorption isotherms and structural studies by means of neutron diffraction , 1978 .

[39]  J. M. Hastings,et al.  Neutron diffraction study of β iron titanium deuteride , 1978 .

[40]  J. Reilly,et al.  Formation and properties of iron titanium hydride , 1974 .

[41]  V. Somenkov Structure of hydrides , 1972 .

[42]  H. LIPSON,et al.  International union of crystallography , 1953 .