Waves in Slowly Varying Band-Gap Media

This paper is concerned with waves in locally periodic media, in the high-frequency limit where the wavelength is commensurate with the period. A key issue is that the Bloch-dispersion curves vary with the local microstructure, giving rise to hidden singularities associated with band-gap edges and branch crossings. We suggest an asymptotic approach for overcoming this difficulty, which we develop in detail in the case of time-harmonic waves in one dimension. The method entails matching adiabatically propagating Bloch waves, captured by a two-variable Wentzel--Kramers--Brillouin (WKB) approximation, with complementary multiple-scale solutions spatially localized about dispersion singularities. The latter solutions, obtained following the method of high-frequency homogenization (HFH), hold over dynamic length scales intermediate between the periodicity (wavelength) and the macro-scale. In particular, close to a spatial band-gap edge the solution is an Airy function modulated on the short scale by a standing...

[1]  R. Craster,et al.  High-frequency homogenization for travelling waves in periodic media , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[2]  T. A. Birks,et al.  Hamiltonian optics of nonuniform photonic crystals , 1999 .

[3]  L. Brillouin Wave propagation in periodic structures : electric filters and crystal lattices , 1953 .

[4]  Kazuaki Sakoda,et al.  Optical Properties of Photonic Crystals , 2001 .

[5]  S. Jonathan Chapman,et al.  On the Theory of Complex Rays , 1999, SIAM Rev..

[6]  P. Yeh,et al.  Optical Waves in Layered Media , 1988 .

[7]  Dynamic effective anisotropy: Asymptotics, simulations, and microwave experiments with dielectric fibers , 2015 .

[8]  Stefan Teufel,et al.  Effective Dynamics for Bloch Electrons: Peierls Substitution and Beyond , 2002 .

[9]  Steven G. Johnson,et al.  Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Weinan E,et al.  Asymptotic analysis of quantum dynamics in crystals: the Bloch-Wigner transform, Bloch dynamics and Berry phase , 2013 .

[11]  G. Allaire,et al.  Localization of high-frequency waves propagating in a locally periodic medium , 2010, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[12]  F. D. M. Haldane,et al.  Analogs of quantum-Hall-effect edge states in photonic crystals , 2008 .

[13]  David R. Smith,et al.  Transformation optics with photonic band gap media. , 2010, Physical review letters.

[14]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[15]  K. Staliunas,et al.  Enhancement of sound in chirped sonic crystals , 2012, 1211.4199.

[16]  R. Craster,et al.  Reflection from a semi-infinite stack of layers using homogenization , 2015 .

[17]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[18]  L. Ó. Náraigh,et al.  Homogenization theory for periodic potentials in the Schrödinger equation , 2013 .

[19]  Ekmel Ozbay,et al.  The focusing effect of graded index photonic crystals , 2008 .

[20]  J. Tromp,et al.  The Berry phase of a slowly varying waveguide , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[21]  Masaya Notomi,et al.  Manipulating light with strongly modulated photonic crystals , 2010 .

[22]  C. Kittel Introduction to solid state physics , 1954 .

[23]  Richard Craster,et al.  High-frequency homogenization of zero-frequency stop band photonic and phononic crystals , 2013, 1304.5782.

[24]  R. Zengerle,et al.  Light Propagation in Singly and Doubly Periodic Planar Waveguides , 1987 .

[25]  S. Adams,et al.  Mechanism for slow waves near cutoff frequencies in periodic waveguides , 2009 .

[26]  L. Vivien,et al.  Short-Wavelength Light Propagation in Graded Photonic Crystals , 2011, Journal of Lightwave Technology.

[27]  Steven G. Johnson,et al.  Photonic Crystals: Molding the Flow of Light , 1995 .

[28]  Masaya Notomi,et al.  Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap , 2000 .

[29]  Two-scale series expansions for travelling wave packets in one-dimensional periodic media , 2015, 1802.05809.

[30]  R. V. Craster,et al.  High-frequency homogenization for periodic media , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[31]  T. Antonakakis,et al.  High-frequency asymptotics for microstructured thin elastic plates and platonics , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[32]  R V Craster,et al.  Rayleigh–Bloch waves along elastic diffraction gratings , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[33]  R. V. Craster,et al.  High frequency homogenisation for elastic lattices , 2014, 1407.2059.

[34]  R. Craster,et al.  Dynamic homogenisation of Maxwell's equations with applications to photonic crystals and localised waveforms on gratings , 2017 .

[35]  P. Yeh,et al.  Bragg reflection waveguides , 1976 .

[36]  Sébastien Guenneau,et al.  Homogenisation for elastic photonic crystals and dynamic anisotropy , 2014 .

[37]  M. Holmes Introduction to Perturbation Methods , 1995 .

[38]  C. Poulton,et al.  Negative refraction and dispersion phenomena in platonic clusters , 2012 .

[39]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[40]  D. J. Colquitt,et al.  Parabolic metamaterials and Dirac bridges , 2015, 1512.01545.

[41]  Steven G. Johnson,et al.  All-angle negative refraction without negative effective index , 2002 .

[42]  Grégoire Allaire,et al.  Diffractive Geometric Optics for Bloch Wave Packets , 2011 .