Cybernetics and Learning Automata

Stochastic learning automata are probabilistic finite state machines which have been used to model how biological systems can learn. The structure of such a machine can be fixed or can be changing with time. A learning automaton can also be implemented using action (choosing) probability updating rules which may or may not depend on estimates from the environment being investigated. This chapter presents an overview of the field of learning automata, perceived as a completely new paradigm for learning, and explains how it is related to the area of cybernetics.

[1]  Kaddour Najim,et al.  Learning automata and stochastic optimization , 1997 .

[2]  B. John Oommen A Learning Automaton Solution to the Stochastic Minimum-Spanning Circle Problem , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[3]  Franciszek Seredynski,et al.  Distributed scheduling using simple learning machines , 1998, Eur. J. Oper. Res..

[4]  Athanasios V. Vasilakos,et al.  Ergodic discretized estimator learning automata with high accuracy and high adaptation rate for nonstationary environments , 1990, [1990] Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence.

[5]  B. John Oommen,et al.  The asymptotic optimality of discretized linear reward-inaction learning automata , 1984, IEEE Transactions on Systems, Man, and Cybernetics.

[6]  Mohammad Reza Meybodi,et al.  New Learning Automata Based Algorithms for Adaptation of Backpropagation Algorithm Parameters , 2002, Int. J. Neural Syst..

[7]  B. John Oommen,et al.  Learning Automata Based Intelligent Tutorial-like System , 2009, KES.

[8]  Georgios I. Papadimitriou,et al.  Learning-automata-based TDMA protocols for broadcast communication systems with bursty traffic , 2000, IEEE Communications Letters.

[9]  B.J. Oommen,et al.  Ε-optimal Discretized Linear Reward-penalty Learning Automata , 1988, IEEE Trans. Syst. Man Cybern..

[10]  B. John Oommen,et al.  Generalized pursuit learning schemes: new families of continuous and discretized learning automata , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[11]  Georgios Dounias,et al.  Advances in Computational Intelligence and Learning , 2002 .

[12]  Athanasios V. Vasilakos,et al.  The Use of Reinforcement Learning Algorithms in Traffic Control of High Speed Networks , 2002, Advances in Computational Intelligence and Learning.

[13]  M. Norman On the linear model with two absorbing barriers , 1968 .

[14]  P. S. Sastry,et al.  Continuous action set learning automata for stochastic optimization , 1994 .

[15]  Athanasios V. Vasilakos,et al.  On the use of a stochastic estimator learning algorithm to the ATM routing problem: a methodology , 1998, Comput. Commun..

[16]  Mohammad S. Obaidat,et al.  Guest editorial learning automata: theory, paradigms, and applications , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[17]  B. John Oommen,et al.  Graph Partitioning Using Learning Automata , 1996, IEEE Trans. Computers.

[18]  M. L. Tsetlin,et al.  Automaton theory and modeling of biological systems , 1973 .

[19]  Pushkin Kachroo,et al.  Simulation study of multiple intelligent vehicle control using stochastic learning automata , 1997 .

[20]  Kaddour Najim,et al.  Learning Automata: Theory and Applications , 1994 .

[21]  P. S. Sastry,et al.  Estimator Algorithms for Learning Automata , 1986 .

[22]  Witold Pedrycz,et al.  Optimizing QoS routing in hierarchical ATM networks using computational intelligence techniques , 2003, IEEE Trans. Syst. Man Cybern. Part C.

[23]  Kumpati S. Narendra,et al.  Use of Stochastic Automata for Parameter Self-Optimization with Multimodal Performance Criteria , 1969, IEEE Trans. Syst. Sci. Cybern..

[24]  M. Thathachar,et al.  Networks of Learning Automata: Techniques for Online Stochastic Optimization , 2003 .

[25]  Harley Bornbach,et al.  An introduction to mathematical learning theory , 1967 .

[26]  B. John Oommen,et al.  Discretized estimator learning automata , 1992, IEEE Trans. Syst. Man Cybern..

[27]  Krinskii Vi ASYMPTOTIC OPTIMAL AUTOMATION WITH EXPONENTIAL SPEED OF CONVERGENCE , 1964 .

[28]  Frederick Mosteller,et al.  Stochastic Models for Learning , 1956 .

[29]  Mohammad Reza Meybodi,et al.  Applying continuous action reinforcement learning automata(CARLA) to global training of hidden Markov models , 2004, International Conference on Information Technology: Coding and Computing, 2004. Proceedings. ITCC 2004..

[30]  B. Johnoommen Absorbing and Ergodic Discretized Two-Action Learning Automata , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[31]  Athanasios V. Vasilakos,et al.  Ergodic discretized estimator learning automata with high accuracy and high adaptation rate for nonstationary environments , 1992, Neurocomputing.

[32]  B. John Oommen,et al.  Continuous Learning Automata Solutions to the Capacity Assignment Problem , 2000, IEEE Trans. Computers.

[33]  Mohammad S. Obaidat,et al.  Learning automata-based bus arbitration for shared-medium ATM switches , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[34]  Athanasios V. Vasilakos,et al.  The use of learning algorithms in ATM networks call admission control problem: a methodology , 2000, Comput. Networks.

[35]  P. S. Sastry,et al.  A Class of Rapidly Converging Algorithms for Learning Automata , 1984 .

[36]  B.J. Oommen,et al.  Parameter learning from stochastic teachers and stochastic compulsive liars , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[37]  M. A. L. THATHACHAR,et al.  A new approach to the design of reinforcement schemes for learning automata , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[38]  S. Lakshmivarahan,et al.  Learning Algorithms Theory and Applications , 1981 .

[39]  B. John Oommen,et al.  GPSPA: a new adaptive algorithm for maintaining shortest path routing trees in stochastic networks , 2004, Int. J. Commun. Syst..