Design and implementation of the infrastructure of HadGEM3: the next-generation Met Office climate modelling system

Abstract. This paper describes the development of a technically robust climate modelling system, HadGEM3, which couples the Met Office Unified Model atmosphere component, the NEMO ocean model and the Los Alamos sea ice model (CICE) using the OASIS coupler. Details of the coupling and technical solutions of the physical model (HadGEM3-AO) are documented, in addition to a description of the configurations of the individual submodels. The paper demonstrates that the implementation of the model has resulted in accurate conservation of heat and freshwater across the model components. The model performance in early versions of this climate model is briefly described to demonstrate that the results are scientifically credible. HadGEM3-AO is the basis for a number of modelling efforts outside of the Met Office, both within the UK and internationally. This documentation of the HadGEM3-AO system provides a detailed reference for developers of HadGEM3-based climate configurations.

[1]  A. Sterl,et al.  The ERA‐40 re‐analysis , 2005 .

[2]  S. Stein,et al.  A model for the global variation in oceanic depth and heat flow with lithospheric age , 1992, Nature.

[3]  W. Hibler A Dynamic Thermodynamic Sea Ice Model , 1979 .

[4]  Alberto Arribas,et al.  The GloSea4 Ensemble Prediction System for Seasonal Forecasting , 2011 .

[5]  Marika M. Holland,et al.  Simulating the ice‐thickness distribution in a coupled climate model , 2001 .

[6]  W. Randel,et al.  A stratospheric ozone profile data set for 1979–2005: Variability, trends, and comparisons with column ozone data , 2007 .

[7]  A. Brown,et al.  Non-local mixing of momentum in the convective boundary layer , 1997 .

[8]  William H. Lipscomb,et al.  Evaluation of the sea ice simulation in a new coupled atmosphere‐ocean climate model (HadGEM1) , 2006 .

[9]  R. Colony,et al.  The thickness distribution of sea ice , 1975 .

[10]  A. Semtner A MODEL FOR THE THERMODYNAMIC GROWTH OF SEA ICE IN NUMERICAL INVESTIGATIONS OF CLIMATE , 1975 .

[11]  William H. Lipscomb,et al.  An energy-conserving thermodynamic model of sea ice , 1999 .

[12]  Simon Wilson,et al.  U.K. HiGEM: The New U.K. High-Resolution Global Environment Model― Model Description and Basic Evaluation , 2009 .

[13]  Akio Arakawa,et al.  Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model , 1977 .

[14]  Ross J. Murray,et al.  Explicit Generation of Orthogonal Grids for Ocean Models , 1996 .

[15]  G. Martin,et al.  The Physical Properties of the Atmosphere in the New Hadley Centre Global Environmental Model (HadGEM1). Part I: Model Description and Global Climatology , 2006 .

[16]  W. H. Raymond High-Order Low-Pass Implicit Tangent Filters for Use in Finite Area Calculations , 1988 .

[17]  William H. Lipscomb,et al.  Ridging, strength, and stability in high-resolution sea ice models , 2007 .

[18]  G. Schmidt,et al.  Ice–ocean boundary conditions for coupled models , 2004 .

[19]  Cyril J. Morcrette,et al.  PC2: A prognostic cloud fraction and condensation scheme. I: Scheme description , 2008 .

[20]  Ken Collins,et al.  Masterclass in AUV technology for Polar science: collaborative Autosub science in extreme environments. Proceedings of the International Masterclass, 28-30 March 2006, National Oceanography Centre, Southampton, UK. , 2007 .

[21]  A. Slingo,et al.  Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model , 1996 .

[22]  Elizabeth C. Kent,et al.  Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century , 2003 .

[23]  S. Los,et al.  A comprehensive set of benchmark tests for a land surface model of simultaneous fluxes of water and carbon at both the global and seasonal scale , 2010 .

[24]  G. Martin,et al.  A New Boundary Layer Mixing Scheme. Part I: Scheme Description and Single-Column Model Tests , 2000 .

[25]  Peter A. Rochford,et al.  An optimal definition for ocean mixed layer depth , 2000 .

[26]  A. Staniforth,et al.  A new dynamical core for the Met Office's global and regional modelling of the atmosphere , 2005 .

[27]  M. Huddleston,et al.  Quality control of ocean temperature and salinity profiles — Historical and real-time data , 2007 .

[28]  P. Delecluse,et al.  OPA 8.1 Ocean General Circulation Model reference manual , 1998 .

[29]  W. Lipscomb Remapping the thickness distribution in sea ice models , 2001 .

[30]  William D. Hibler,et al.  Modeling a variable thickness sea ice cover , 1980 .

[31]  Nigel Wood,et al.  A monotonically‐damping second‐order‐accurate unconditionally‐stable numerical scheme for diffusion , 2007 .

[32]  C. Paulson,et al.  Irradiance Measurements in the Upper Ocean , 1977 .

[33]  D. Rothrock,et al.  The energetics of the plastic deformation of pack ice by ridging , 1975 .

[34]  Michel Crucifix,et al.  The new hadley centre climate model (HadGEM1) : Evaluation of coupled simulations , 2006 .

[35]  J. Janowiak,et al.  The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present) , 2003 .

[36]  Bruno Blanke,et al.  Variability of the Tropical Atlantic Ocean Simulated by a General Circulation Model with Two Different Mixed-Layer Physics , 1993 .

[37]  John M. Edwards,et al.  Oceanic latent heat fluxes: Consistency with the atmospheric hydrological and energy cycles and general circulation modeling , 2007 .

[38]  Philippe Gaspar,et al.  A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: Tests at Station Papa and long-term upper ocean study site , 1990 .

[39]  P. Gent,et al.  Isopycnal mixing in ocean circulation models , 1990 .

[40]  T. Oki,et al.  Design of Total Runoff Integrating Pathways (TRIP)—A Global River Channel Network , 1998 .

[41]  T. McDougall,et al.  Minimal Adjustment of Hydrographic Profiles to Achieve Static Stability , 1995 .

[42]  R. Betts,et al.  The impact of new land surface physics on the GCM simulation of climate and climate sensitivity , 1999 .

[43]  William H. Lipscomb,et al.  Modeling Sea Ice Transport Using Incremental Remapping , 2004 .

[44]  A. Staniforth,et al.  Semi-Lagrangian integration schemes for atmospheric models - A review , 1991 .

[45]  Philip W. Jones First- and Second-Order Conservative Remapping Schemes for Grids in Spherical Coordinates , 1999 .

[46]  Van Genuchten,et al.  A closed-form equation for predicting the hydraulic conductivity of unsaturated soils , 1980 .

[47]  C. Jones,et al.  The HadGEM2 family of Met Office Unified Model climate configurations , 2011 .

[48]  William D. Hibler,et al.  Ridging and strength in modeling the thickness distribution of Arctic sea ice , 1995 .

[49]  Stuart Webster,et al.  Improvements to the representation of orography in the Met Office Unified Model , 2003 .

[50]  Richard Asselin,et al.  Frequency Filter for Time Integrations , 1972 .

[51]  John K. Dukowicz,et al.  The Elastic Viscous Plastic Sea Ice Dynamics Model in General Orthogonal Curvilinear Coordinates on a Sphere—Incorporation of Metric Terms , 2002 .