Motion parallax from head movement enhances stereoscopic displays by improving presence and decreasing visual fatigue

[1]  J. van der Hoeve,et al.  ACCOMMODATION* , 1924, British Journal of Ophthalmology.

[2]  P. Fitts The information capacity of the human motor system in controlling the amplitude of movement. , 1954, Journal of experimental psychology.

[3]  Sérgio Tosi Rodrigues,et al.  Postural stabilization of looking: Effects of object distance , 1969 .

[4]  Robert S. Kennedy,et al.  Simulator Sickness Questionnaire: An enhanced method for quantifying simulator sickness. , 1993 .

[5]  Kellogg S. Booth,et al.  Evaluating 3D task performance for fish tank virtual worlds , 1993, TOIS.

[6]  Carolina Cruz-Neira,et al.  Surround-Screen Projection-Based Virtual Reality: The Design and Implementation of the CAVE , 2023 .

[7]  Kellogg S. Booth,et al.  Fish tank virtual reality , 1993, INTERCHI.

[8]  Jun Rekimoto A vision-based head tracker for fish tank virtual reality-VR without head gear , 1995, Proceedings Virtual Reality Annual International Symposium '95.

[9]  William W. Gaver,et al.  A Virtual Window on media space , 1995, CHI '95.

[10]  Colin Ware,et al.  Evaluating stereo and motion cues for visualizing information nets in three dimensions , 1996, TOGS.

[11]  Kellogg S. Booth,et al.  A study of interactive 3D point location in a computer simulated virtual environment , 1997, VRST '97.

[12]  P. Howarth,et al.  The occurrence of virtual simulation sickness symptoms when an HMD was used as a personal viewing system , 1997 .

[13]  Michael J. Singer,et al.  Measuring Presence in Virtual Environments: A Presence Questionnaire , 1998, Presence.

[14]  Randy J. Pagulayan,et al.  Postural stabilization of looking. , 1999 .

[15]  Mel Slater,et al.  Measuring Presence: A Response to the Witmer and Singer Presence Questionnaire , 1999, Presence.

[16]  Colin Ware,et al.  Eye-hand co-ordination with force feedback , 2000, CHI.

[17]  G P Bingham,et al.  Accommodation, occlusion, and disparity matching are used to guide reaching: a comparison of actual versus virtual environments. , 2001, Journal of experimental psychology. Human perception and performance.

[18]  Sumio Yano,et al.  A study of visual fatigue and visual comfort for 3D HDTV/HDTV images , 2002 .

[19]  Colin Ware,et al.  The Importance of Stereo and Eye-Coupled Perspective for Eye-Hand Coordination in Fish Tank VR , 2004, Presence: Teleoperators & Virtual Environments.

[20]  Colin Ware,et al.  Reevaluating stereo and motion cues for visualizing graphs in three dimensions , 2005, APGV '05.

[21]  Michael J. Singer,et al.  The Factor Structure of the Presence Questionnaire , 2005, Presence: Teleoperators & Virtual Environments.

[22]  Cullen D. Jackson,et al.  CAVE and fishtank virtual-reality displays: a qualitative and quantitative comparison , 2006, IEEE Transactions on Visualization and Computer Graphics.

[23]  Timo Ropinski,et al.  Interscopic User Interface Concepts for Fish Tank Virtual Reality Systems , 2007, 2007 IEEE Virtual Reality Conference.

[24]  Jim R. Parker,et al.  The virtual window simulator , 2007, Future Play.

[25]  Prabhat,et al.  A Comparative Study of Desktop, Fishtank, and Cave Systems for the Exploration of Volume Rendered Confocal Data Sets , 2008, IEEE Transactions on Visualization and Computer Graphics.

[26]  J. Kuze,et al.  Subjective evaluation of visual fatigue caused by motion images , 2008, Displays.

[27]  Keetaek Kham,et al.  Measurement of 3D Visual Fatigue Using Event-Related Potential (ERP): 3D Oddball Paradigm , 2008, 2008 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video.

[28]  Yvonne de Kort,et al.  A Room with a Cue: The Efficacy of Movement Parallax, Occlusion, and Blur in Creating a Virtual Window , 2008, PRESENCE: Teleoperators and Virtual Environments.

[29]  Sidney S. Fels,et al.  pCubee: a perspective-corrected handheld cubic display , 2010, CHI.

[30]  Kirstie Hawkey,et al.  Whale Tank Virtual Reality , 2010, Graphics Interface.

[31]  Roel Vertegaal,et al.  SnowGlobe: a spherical fish-tank VR display , 2011, CHI Extended Abstracts.

[32]  Laurence Nigay,et al.  Using the user's point of view for interaction on mobile devices , 2011, IHM.

[33]  Andrew P. McPherson,et al.  Recreating the parallax effect associated with Fishtank VR in a Real-Time telepresence system using head-tracking and a robotic camera , 2012, 2012 IEEE International Symposium on Mixed and Augmented Reality (ISMAR).

[34]  Min-Chul Park,et al.  SSVEP and ERP measurement of cognitive fatigue caused by stereoscopic 3D , 2012, Neuroscience Letters.

[35]  S. Malek,et al.  A Comparative Analysis of Fish Tank Virtual Reality to Stereoscopic 3 D Imagery , 2012 .

[36]  Christof Lutteroth,et al.  Enhancing 3D Applications Using Stereoscopic 3D and Motion Parallax , 2012, AUIC.

[37]  Eric D. Ragan,et al.  Studying the Effects of Stereo, Head Tracking, and Field of Regard on a Small-Scale Spatial Judgment Task , 2013, IEEE Transactions on Visualization and Computer Graphics.

[38]  Doug A. Bowman,et al.  Validation of the MR Simulation Approach for Evaluating the Effects of Immersion on Visual Analysis of Volume Data , 2012, IEEE Transactions on Visualization and Computer Graphics.

[39]  Kang Ryoung Park,et al.  Quantitative Measurement of Eyestrain on 3D Stereoscopic Display Considering the Eye Foveation Model and Edge Information , 2014, Sensors.

[40]  Hans-Peter Seidel,et al.  Motion parallax in stereo 3D , 2016, ACM Trans. Graph..

[41]  Matthew N. Dailey,et al.  Communication portals: Immersive communication for everyday life , 2017, 2017 20th Conference on Innovations in Clouds, Internet and Networks (ICIN).