Deterministic global optimization in ab-initio quantum chemistry

A large number of problems in ab-initio quantum chemistry involve finding the global minimum of the total system energy. These problems are traditionally solved by numerical approaches equivalent to local optimization. While these approaches are relatively efficient, they do not provide guarantees of global optimality unless a starting point sufficiently close to the global minimum is known apriori. Due to the enormous amount of computational effort required to solve these problems, more mathematically rigorous alternatives have so far received very little attention. Taking the above issue into consideration, this paper explores the use of deterministic global optimization in the context of Hartree-Fock theory, an important mathematical model applied in many quantum chemistry methods. In particular, it presents a general purpose approach for generating linear relaxations for problems arising from Hartree-Fock theory. This was then implemented as an extension to the $${{\tt COUENNE}}$$ (Convex Over and Under ENvelopes for Nonlinear Estimation) branch and bound mixed integer non-linear programs solver. Proof of concept calculations that simultaneously optimise the orbital coefficients and the location of the nuclei in closed-shell Hartree-Fock calculations are presented and discussed.

[1]  Hiroshi Nakatsuji,et al.  Structure of the exact wave function , 2000 .

[2]  A. Land,et al.  An Automatic Method for Solving Discrete Programming Problems , 1960, 50 Years of Integer Programming.

[3]  Martin Head-Gordon,et al.  A method for two-electron Gaussian integral and integral derivative evaluation using recurrence relations , 1988 .

[4]  Panos M. Pardalos,et al.  Encyclopedia of Optimization , 2006 .

[5]  Brian W. Kernighan,et al.  AMPL: A Mathematical Programing Language , 1989 .

[6]  John L. Klepeis,et al.  Predicting solvated peptide conformations via global minimization of energetic atom-to-atom interactions , 1998 .

[7]  Dalibor Bartoněk Algorithm for Travelling Salesman Problem , 2015 .

[8]  Christodoulos A. Floudas,et al.  Finding all solutions of nonlinearly constrained systems of equations , 1995, J. Glob. Optim..

[9]  J. Doye,et al.  Global Optimization by Basin-Hopping and the Lowest Energy Structures of Lennard-Jones Clusters Containing up to 110 Atoms , 1997, cond-mat/9803344.

[10]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[11]  R. Lougee-Heimer,et al.  The Common Optimization INterface for Operations Research: Promoting open-source software in the operations research community , 2003 .

[12]  C. Floudas,et al.  A global optimization approach for Lennard‐Jones microclusters , 1992 .

[13]  John L. Klepeis,et al.  Comparative study of global minimum energy conformations of hydrated peptides , 1999, J. Comput. Chem..

[14]  Edward M. B. Smith,et al.  On the optimal design of continuous processes , 1996 .

[15]  Youdong Lin,et al.  Deterministic global optimization of molecular structures using interval analysis , 2005, J. Comput. Chem..

[16]  C. Lavor,et al.  Using an interval branch‐and‐bound algorithm in the Hartree–Fock method , 2005 .

[17]  Martin Berz,et al.  Computational differentiation : techniques, applications, and tools , 1996 .

[18]  G. T. Timmer,et al.  Stochastic global optimization methods part I: Clustering methods , 1987, Math. Program..

[19]  Garth P. McCormick,et al.  Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems , 1976, Math. Program..

[20]  R. B. Kearfott Rigorous Global Search: Continuous Problems , 1996 .

[21]  H. Scheraga,et al.  Global optimization of clusters, crystals, and biomolecules. , 1999, Science.

[22]  Teodor Gabriel Crainic,et al.  Parallel Branch‐and‐Bound Algorithms , 2006 .

[23]  J. L. Klepeis,et al.  Predicting peptide structures using NMR data and deterministic global optimization , 1999 .

[24]  Christodoulos A. Floudas,et al.  Deterministic global optimization - theory, methods and applications , 2010, Nonconvex optimization and its applications.

[25]  Nelson Maculan,et al.  Solving Hartree-Fock systems with global optimization methods , 2007 .

[26]  Sartaj Sahni,et al.  Computationally Related Problems , 1974, SIAM J. Comput..

[27]  Benny G. Johnson,et al.  Two‐electron repulsion integrals over Gaussian s functions , 1991 .

[28]  A. Bouferguene,et al.  STOP: A slater‐type orbital package for molecular electronic structure determination , 1996 .

[29]  C. Adjiman,et al.  A global optimization method, αBB, for general twice-differentiable constrained NLPs—II. Implementation and computational results , 1998 .

[30]  Christodoulos A. Floudas,et al.  A review of recent advances in global optimization , 2009, J. Glob. Optim..

[31]  John L. Klepeis,et al.  A new class of hybrid global optimization algorithms for peptide structure prediction: integrated hybrids , 2003 .

[32]  Linus Schrage,et al.  The global solver in the LINDO API , 2009, Optim. Methods Softw..

[33]  Leo Liberti,et al.  Reformulation and convex relaxation techniques for global optimization , 2004, 4OR.

[34]  J. E. Falk,et al.  An Algorithm for Separable Nonconvex Programming Problems , 1969 .

[35]  Leo Liberti,et al.  Computational Experience with the Molecular Distance Geometry Problem , 2006 .

[36]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[37]  David Kendrick,et al.  GAMS, a user's guide , 1988, SGNM.

[38]  Leo Liberti,et al.  Reformulation in mathematical programming: An application to quantum chemistry , 2009, Discret. Appl. Math..

[39]  G. Scuseria,et al.  Gaussian 03, Revision E.01. , 2007 .

[40]  Gérard Cornuéjols,et al.  An algorithmic framework for convex mixed integer nonlinear programs , 2008, Discret. Optim..

[41]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[42]  John Forrest,et al.  CBC User Guide , 2005 .

[43]  Leo Liberti,et al.  Branching and bounds tighteningtechniques for non-convex MINLP , 2009, Optim. Methods Softw..

[44]  Angelo Lucia,et al.  Molecular conformation of n-alkanes using terrain/funneling methods , 2009, J. Glob. Optim..

[45]  Shigeru Obara,et al.  Efficient recursive computation of molecular integrals over Cartesian Gaussian functions , 1986 .

[46]  John L. Klepeis,et al.  Multiple Minima Problem in Protein Folding: aplhaBB Global Optimization Approach , 2009, Encyclopedia of Optimization.

[47]  Æleen Frisch,et al.  Exploring chemistry with electronic structure methods , 1996 .

[48]  K. Ho,et al.  Structural optimization of Lennard-Jones clusters by a genetic algorithm , 1996 .

[49]  Leo Liberti Ev3: A Library for Symbolic Computation in C++ using n -ary Trees , 2003 .

[50]  John H. Holland,et al.  Genetic Algorithms and the Optimal Allocation of Trials , 1973, SIAM J. Comput..

[51]  E. Davidson,et al.  One- and two-electron integrals over cartesian gaussian functions , 1978 .

[52]  A. Szabó,et al.  Modern quantum chemistry : introduction to advanced electronic structure theory , 1982 .

[53]  K. Doll,et al.  Structure prediction based on ab initio simulated annealing for boron nitride , 2008, 0810.5476.

[54]  Tamás Vinkó,et al.  A comparison of complete global optimization solvers , 2005, Math. Program..

[55]  Peter M. W. Gill,et al.  Molecular integrals Over Gaussian Basis Functions , 1994 .

[56]  A. Neumaier,et al.  A global optimization method, αBB, for general twice-differentiable constrained NLPs — I. Theoretical advances , 1998 .

[57]  Sonia Cafieri,et al.  On convex relaxations of quadrilinear terms , 2010, J. Glob. Optim..

[58]  Christodoulos A. Floudas,et al.  Deterministic Global Optimization: Theory, Methods and (NONCONVEX OPTIMIZATION AND ITS APPLICATIONS Volume 37) (Nonconvex Optimization and Its Applications) , 2005 .

[59]  Carlile Lavor A deterministic approach for global minimization of molecular potential energy functions , 2003 .

[60]  Stein W. Wallace Algorithms and model formulations in mathematical programming , 1989 .

[61]  Martin Berz,et al.  5. Remainder Differential Algebras and Their Applications , 1996 .

[62]  Leo Liberti,et al.  Convex Envelopes of Monomials of Odd Degree , 2003, J. Glob. Optim..

[63]  Jun Li,et al.  Basis Set Exchange: A Community Database for Computational Sciences , 2007, J. Chem. Inf. Model..