Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna.

We demonstrate with accurate scattering calculations that a system constituted by a single quantum emitter (a semiconductor quantum dot) placed in the gap between two metallic nanoparticles can display the vacuum Rabi splitting. The largest dimension of the investigated system is only 36 nm. This nonperturbative regime is highly desirable for many possible applications in quantum information processing or schemes for controlling individual photons. Along this road, it will be possible to implement scalable photonic quantum computation without renouncing to the nanometric size of the classical logic gates of the present most compact electronic technology.

[1]  A. Brillante,et al.  Exciton–surface plasmon coupling: An experimental investigation , 1982 .

[2]  D. Gammon,et al.  Optical Studies of Single Quantum Dots , 2002 .

[3]  A S Sørensen,et al.  Quantum optics with surface plasmons. , 2005, Physical review letters.

[4]  M. S. Skolnick,et al.  Strong exciton–photon coupling in an organic semiconductor microcavity , 1998, Nature.

[5]  J. Mugnier,et al.  Strong coupling between surface plasmons and excitons in an organic semiconductor. , 2004, Physical review letters.

[6]  M E Abdelsalam,et al.  Strong coupling between localized plasmons and organic excitons in metal nanovoids. , 2006, Physical review letters.

[7]  D. E. Chang,et al.  A single-photon transistor using nanoscale surface plasmons , 2007, 0706.4335.

[8]  J. Raimond,et al.  Manipulating quantum entanglement with atoms and photons in a cavity , 2001 .

[9]  Weiyang Li,et al.  Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced Raman scattering. , 2009, Nano letters.

[10]  M. Lukin,et al.  Generation of single optical plasmons in metallic nanowires coupled to quantum dots , 2007, Nature.

[11]  Zongfu Yu,et al.  Large Single-Molecule Fluorescence Enhancements Produced by a Bowtie Nanoantenna , 2009 .

[12]  M. Dignam,et al.  Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides , 2009, 0908.2774.

[13]  Emil Prodan,et al.  Plasmon Hybridization in Nanoparticle Dimers , 2004 .

[14]  G. Sęk,et al.  Strong coupling in a single quantum dot semiconductor microcavity system , 2006, SPIE OPTO.

[15]  M. Pettersson,et al.  Vacuum Rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6G molecules. , 2009, Physical review letters.

[16]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[17]  A. Doherty,et al.  Cavity Quantum Electrodynamics: Coherence in Context , 2002, Science.

[18]  Dirk Englund,et al.  Controlled Phase Shifts with a Single Quantum Dot , 2008, Science.

[19]  Near-field light emission from nano- and micrometric complex structures , 2002, cond-mat/0212239.

[20]  Quantum Complementarity of Microcavity Polaritons , 2004, cond-mat/0411314.

[21]  T. Reinecke,et al.  Oscillator model for vacuum Rabi splitting in microcavities , 1999 .

[22]  G. Rupper,et al.  Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity , 2004, Nature.

[23]  D. Bergman,et al.  Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. , 2003, Physical review letters.

[24]  Giuseppe C. La Rocca,et al.  Simulation of J-aggregate microcavity photoluminescence , 2008 .

[25]  V. Shalaev,et al.  Demonstration of a spaser-based nanolaser , 2009, Nature.

[26]  Wei Zhang,et al.  Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear fano effect. , 2006, Physical review letters.

[27]  Peter Nordlander,et al.  Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes. , 2008, Nano letters.

[28]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[29]  M. Miyamura,et al.  Size-dependent radiative decay time of excitons in GaN/AlN self-assembled quantum dots , 2003 .

[30]  Morin,et al.  Vacuum Rabi splitting as a feature of linear-dispersion theory: Analysis and experimental observations. , 1990, Physical review letters.

[31]  J. Raimond,et al.  Observation of cavity-enhanced single-atom spontaneous emission , 1983 .

[32]  D. Bimberg,et al.  Ultralong dephasing time in InGaAs quantum dots. , 2001, Physical review letters.

[33]  L. Novotný,et al.  Enhancement and quenching of single-molecule fluorescence. , 2006, Physical review letters.

[34]  Vahid Sandoghdar,et al.  Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. , 2006, Physical review letters.

[35]  Hongxing Xu,et al.  Multiple-particle nanoantennas for enormous enhancement and polarization control of light emission. , 2009, ACS nano.

[36]  S. Gulde,et al.  Quantum nature of a strongly coupled single quantum dot–cavity system , 2007, Nature.

[37]  C. Weisbuch,et al.  Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. , 1992, Physical review letters.

[38]  H. Kimble,et al.  Scalable photonic quantum computation through cavity-assisted interactions. , 2004, Physical review letters.

[39]  G. Schatz,et al.  Electromagnetic fields around silver nanoparticles and dimers. , 2004, The Journal of chemical physics.

[40]  D. Pohl,et al.  Single quantum dot coupled to a scanning optical antenna: a tunable superemitter. , 2005, Physical review letters.

[41]  Steven R. Emory,et al.  Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.

[42]  K. Vahala Optical microcavities , 2003, Nature.

[43]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[44]  Dehmelt,et al.  Observation of inhibited spontaneous emission. , 1985, Physical review letters.

[45]  A. Forchel,et al.  Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators. , 2001, Physical review letters.

[46]  P. Lagoudakis,et al.  Room-temperature polariton lasing in semiconductor microcavities. , 2007, Physical review letters.

[47]  D. Petrosyan,et al.  Fundamentals of quantum optics and quantum information , 2006 .

[48]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[49]  R. Brecha,et al.  Cavity Induced Transparency , 1996 .

[50]  C. Muschik Quantum Information Processing with Atoms and Photons , 2011 .

[51]  Philip J. Wyatt,et al.  Scattering of Electromagnetic Plane Waves from Inhomogeneous Spherically Symmetric Objects , 1962 .

[52]  Min Xiao,et al.  Resonantly driven coherent oscillations in a solid-state quantum emitter , 2009 .