Nitsche's method for Helmholtz problems with embedded interfaces

In this work, we use Nitsche's formulation to weakly enforce kinematic constraints at an embedded interface in Helmholtz problems. Allowing embedded interfaces in a mesh provides significant ease for discretization, especially when material interfaces have complex geometries. We provide analytical results that establish the well-posedness of Helmholtz variational problems and convergence of the corresponding finite element discretizations when Nitsche's method is used to enforce kinematic constraints. As in the analysis of conventional Helmholtz problems, we show that the inf-sup constant remains positive provided that the Nitsche's stabilization parameter is judiciously chosen. We then apply our formulation to several 2D plane-wave examples that confirm our analytical findings. Doing so, we demonstrate the asymptotic convergence of the proposed method and show that numerical results are in accordance with the theoretical analysis.

[1]  Peter Hansbo,et al.  Nitsche's method for coupling non-matching meshes in fluid-structure vibration problems , 2003 .

[2]  Tod A. Laursen,et al.  A Nitsche embedded mesh method , 2012 .

[3]  O. Cessenat,et al.  Application of an Ultra Weak Variational Formulation of Elliptic PDEs to the Two-Dimensional Helmholtz Problem , 1998 .

[4]  Isaac Harari,et al.  Analysis of an efficient finite element method for embedded interface problems , 2010 .

[5]  Dan Givoli,et al.  The Nitsche method applied to a class of mixed-dimensional coupling problems , 2014 .

[6]  Sophia Blau,et al.  Analysis Of The Finite Element Method , 2016 .

[7]  L. Thompson A review of finite-element methods for time-harmonic acoustics , 2006 .

[8]  Leszek Demkowicz,et al.  Asymptotic convergence in finite and boundary element methods: part 1: theoretical results , 1994 .

[9]  Isaac Harari,et al.  A robust Nitsche's formulation for interface problems with spline‐based finite elements , 2015 .

[10]  C. Farhat,et al.  The Discontinuous Enrichment Method , 2000 .

[11]  Anthony T. Patera,et al.  Domain Decomposition by the Mortar Element Method , 1993 .

[12]  Faker Ben Belgacem,et al.  The Mortar finite element method with Lagrange multipliers , 1999, Numerische Mathematik.

[13]  Isaac Harari,et al.  An efficient finite element method for embedded interface problems , 2009 .

[14]  I. Babuska,et al.  Finite element solution of the Helmholtz equation with high wave number Part I: The h-version of the FEM☆ , 1995 .

[15]  P. Hansbo,et al.  An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .

[16]  David R. O'Hallaron,et al.  Large-scale simulation of elastic wave propagation in heterogeneous media on parallel computers , 1998 .

[17]  Isaac Harari,et al.  A survey of finite element methods for time-harmonic acoustics , 2006 .

[18]  Daniele Boffi,et al.  Finite element approximation of eigenvalue problems , 2010, Acta Numerica.

[19]  S. Valliappan,et al.  A solution algorithm for linear constraint equations in finite element analysis , 1978 .

[20]  G. C. Everhe FINITE ELEMENT FORMULATONS OF STRUCTURAL ACOUSTICS PROBLEMS , 2003 .

[21]  Isaac Harari,et al.  Reducing Dispersion of Linear Triangular Elements for the Helmholtz Equation , 2002 .

[22]  I. Babuska,et al.  Dispersion analysis and error estimation of Galerkin finite element methods for the Helmholtz equation , 1995 .

[23]  P. Hansbo,et al.  A finite element method for the simulation of strong and weak discontinuities in solid mechanics , 2004 .

[24]  John E. Dolbow,et al.  A robust Nitsche’s formulation for interface problems , 2012 .

[25]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[26]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[27]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[28]  P. Ladevèze,et al.  The variational theory of complex rays for the calculation of medium‐frequency vibrations , 2001 .

[29]  Georg Stadler,et al.  A high-order discontinuous Galerkin method for wave propagation through coupled elastic-acoustic media , 2010, J. Comput. Phys..

[30]  Mark S. Shephard,et al.  An algorithm for multipoint constraints in finite element analysis , 1979 .

[31]  I. Babuska The Finite Element Method with Penalty , 1973 .

[32]  F. Brezzi,et al.  A discourse on the stability conditions for mixed finite element formulations , 1990 .

[33]  I. Babuska Error-bounds for finite element method , 1971 .

[34]  Rolf Stenberg,et al.  Nitsche's method for general boundary conditions , 2009, Math. Comput..

[35]  C. Bernardi,et al.  A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .

[36]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .

[37]  Tod A. Laursen,et al.  On methods for stabilizing constraints over enriched interfaces in elasticity , 2009 .

[38]  M. Fink,et al.  The Stokes relations linking time reversal and the inverse filter , 2004, IEEE Ultrasonics Symposium, 2004.

[39]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[40]  Paul E. Barbone,et al.  FINITE ELEMENT FORMULATIONS FOR EXTERIOR PROBLEMS : APPLICATION TO HYBRID METHODS, NON-REFLECTING BOUNDARY CONDITIONS, AND INFINITE ELEMENTS , 1997 .

[41]  Antonio Huerta,et al.  Imposing essential boundary conditions in mesh-free methods , 2004 .