Nitsche's method for Helmholtz problems with embedded interfaces
暂无分享,去创建一个
Wilkins Aquino | Isaac Harari | Zilong Zou | W. Aquino | I. Harari | Z. Zou
[1] Peter Hansbo,et al. Nitsche's method for coupling non-matching meshes in fluid-structure vibration problems , 2003 .
[2] Tod A. Laursen,et al. A Nitsche embedded mesh method , 2012 .
[3] O. Cessenat,et al. Application of an Ultra Weak Variational Formulation of Elliptic PDEs to the Two-Dimensional Helmholtz Problem , 1998 .
[4] Isaac Harari,et al. Analysis of an efficient finite element method for embedded interface problems , 2010 .
[5] Dan Givoli,et al. The Nitsche method applied to a class of mixed-dimensional coupling problems , 2014 .
[6] Sophia Blau,et al. Analysis Of The Finite Element Method , 2016 .
[7] L. Thompson. A review of finite-element methods for time-harmonic acoustics , 2006 .
[8] Leszek Demkowicz,et al. Asymptotic convergence in finite and boundary element methods: part 1: theoretical results , 1994 .
[9] Isaac Harari,et al. A robust Nitsche's formulation for interface problems with spline‐based finite elements , 2015 .
[10] C. Farhat,et al. The Discontinuous Enrichment Method , 2000 .
[11] Anthony T. Patera,et al. Domain Decomposition by the Mortar Element Method , 1993 .
[12] Faker Ben Belgacem,et al. The Mortar finite element method with Lagrange multipliers , 1999, Numerische Mathematik.
[13] Isaac Harari,et al. An efficient finite element method for embedded interface problems , 2009 .
[14] I. Babuska,et al. Finite element solution of the Helmholtz equation with high wave number Part I: The h-version of the FEM☆ , 1995 .
[15] P. Hansbo,et al. An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .
[16] David R. O'Hallaron,et al. Large-scale simulation of elastic wave propagation in heterogeneous media on parallel computers , 1998 .
[17] Isaac Harari,et al. A survey of finite element methods for time-harmonic acoustics , 2006 .
[18] Daniele Boffi,et al. Finite element approximation of eigenvalue problems , 2010, Acta Numerica.
[19] S. Valliappan,et al. A solution algorithm for linear constraint equations in finite element analysis , 1978 .
[20] G. C. Everhe. FINITE ELEMENT FORMULATONS OF STRUCTURAL ACOUSTICS PROBLEMS , 2003 .
[21] Isaac Harari,et al. Reducing Dispersion of Linear Triangular Elements for the Helmholtz Equation , 2002 .
[22] I. Babuska,et al. Dispersion analysis and error estimation of Galerkin finite element methods for the Helmholtz equation , 1995 .
[23] P. Hansbo,et al. A finite element method for the simulation of strong and weak discontinuities in solid mechanics , 2004 .
[24] John E. Dolbow,et al. A robust Nitsche’s formulation for interface problems , 2012 .
[25] I. Babuska,et al. The Partition of Unity Method , 1997 .
[26] F. Brezzi. On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .
[27] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[28] P. Ladevèze,et al. The variational theory of complex rays for the calculation of medium‐frequency vibrations , 2001 .
[29] Georg Stadler,et al. A high-order discontinuous Galerkin method for wave propagation through coupled elastic-acoustic media , 2010, J. Comput. Phys..
[30] Mark S. Shephard,et al. An algorithm for multipoint constraints in finite element analysis , 1979 .
[31] I. Babuska. The Finite Element Method with Penalty , 1973 .
[32] F. Brezzi,et al. A discourse on the stability conditions for mixed finite element formulations , 1990 .
[33] I. Babuska. Error-bounds for finite element method , 1971 .
[34] Rolf Stenberg,et al. Nitsche's method for general boundary conditions , 2009, Math. Comput..
[35] C. Bernardi,et al. A New Nonconforming Approach to Domain Decomposition : The Mortar Element Method , 1994 .
[36] I. Babuska. The finite element method with Lagrangian multipliers , 1973 .
[37] Tod A. Laursen,et al. On methods for stabilizing constraints over enriched interfaces in elasticity , 2009 .
[38] M. Fink,et al. The Stokes relations linking time reversal and the inverse filter , 2004, IEEE Ultrasonics Symposium, 2004.
[39] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .
[40] Paul E. Barbone,et al. FINITE ELEMENT FORMULATIONS FOR EXTERIOR PROBLEMS : APPLICATION TO HYBRID METHODS, NON-REFLECTING BOUNDARY CONDITIONS, AND INFINITE ELEMENTS , 1997 .
[41] Antonio Huerta,et al. Imposing essential boundary conditions in mesh-free methods , 2004 .