Sparse phase retrieval via Phaseliftoff

The aim of sparse phase retrieval is to recover a $k$-sparse signal $\mathbf{x}_0\in \mathbb{C}^{d}$ from quadratic measurements $|\langle \mathbf{a}_i,\mathbf{x}_0\rangle|^2$ where $\mathbf{a}_i\in \mathbb{C}^d, i=1,\ldots,m$. Noting $|\langle \mathbf{a}_i,\mathbf{x}_0\rangle|^2={\text{Tr}}(A_iX_0)$ with $A_i=\mathbf{a}_i\mathbf{a}_i^*\in \mathbb{C}^{d\times d}, X_0=\mathbf{x}_0\mathbf{x}_0^*\in \mathbb{C}^{d\times d}$, one can recast sparse phase retrieval as a problem of recovering a rank-one sparse matrix from linear measurements. Yin and Xin introduced PhaseLiftOff which presents a proxy of rank-one condition via the difference of trace and Frobenius norm. By adding sparsity penalty to PhaseLiftOff, in this paper, we present a novel model to recover sparse signals from quadratic measurements. Theoretical analysis shows that the solution to our model provides the stable recovery of $\mathbf{x}_0$ under almost optimal sampling complexity $m=O(k\log(d/k))$. The computation of our model is carried out by the difference of convex function algorithm (DCA). Numerical experiments demonstrate that our algorithm outperforms other state-of-the-art algorithms used for solving sparse phase retrieval.

[1]  Yonina C. Eldar,et al.  Phase Retrieval via Matrix Completion , 2011, SIAM Rev..

[2]  Dan Edidin,et al.  An algebraic characterization of injectivity in phase retrieval , 2013, ArXiv.

[3]  Roman Vershynin,et al.  Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.

[4]  Bingsheng He,et al.  On the O(1/n) Convergence Rate of the Douglas-Rachford Alternating Direction Method , 2012, SIAM J. Numer. Anal..

[5]  J. Xin,et al.  PhaseLiftOff: an Accurate and Stable Phase Retrieval Method Based on Difference of Trace and Frobenius Norms , 2014, 1406.6761.

[6]  Gang Wang,et al.  Sparse Phase Retrieval via Truncated Amplitude Flow , 2016, IEEE Transactions on Signal Processing.

[7]  Xiaodong Li,et al.  Sparse Signal Recovery from Quadratic Measurements via Convex Programming , 2012, SIAM J. Math. Anal..

[8]  Zhiqiang Xu,et al.  A strong restricted isometry property, with an application to phaseless compressed sensing , 2014, ArXiv.

[9]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[10]  Le Thi Hoai An,et al.  A D.C. Optimization Algorithm for Solving the Trust-Region Subproblem , 1998, SIAM J. Optim..

[11]  A. Banerjee Convex Analysis and Optimization , 2006 .

[12]  Zhiqiang Xu,et al.  Phase Retrieval for Sparse Signals , 2013, ArXiv.

[13]  Song Li,et al.  Identifiability of Multichannel Blind Deconvolution and Nonconvex Regularization Algorithm , 2018, IEEE Transactions on Signal Processing.

[14]  Ziyang Yuan,et al.  Phase Retrieval via Sparse Wirtinger Flow , 2017, J. Comput. Appl. Math..

[15]  Jack Xin,et al.  Minimization of ℓ1-2 for Compressed Sensing , 2015, SIAM J. Sci. Comput..

[16]  Xiaodong Li,et al.  Solving Quadratic Equations via PhaseLift When There Are About as Many Equations as Unknowns , 2012, Found. Comput. Math..

[17]  Xiaodong Li,et al.  Optimal Rates of Convergence for Noisy Sparse Phase Retrieval via Thresholded Wirtinger Flow , 2015, ArXiv.

[18]  Yu Xia,et al.  The recovery of complex sparse signals from few phaseless measurements , 2019, Applied and Computational Harmonic Analysis.

[19]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[20]  Zhiqiang Xu,et al.  Generalized phase retrieval : measurement number, matrix recovery and beyond , 2016, Applied and Computational Harmonic Analysis.

[21]  Yonina C. Eldar,et al.  GESPAR: Efficient Phase Retrieval of Sparse Signals , 2013, IEEE Transactions on Signal Processing.

[22]  T. P. Dinh,et al.  Convex analysis approach to d.c. programming: Theory, Algorithm and Applications , 1997 .

[23]  Yonina C. Eldar,et al.  Sparsity Based Sub-wavelength Imaging with Partially Incoherent Light via Quadratic Compressed Sensing References and Links , 2022 .

[24]  Emmanuel J. Candès,et al.  PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming , 2011, ArXiv.