Extendibility limits the performance of quantum processors

Resource theories in quantum information science are helpful for the study and quantification of the performance of information-processing tasks that involve quantum systems. These resource theories also find applications in other areas of study; e.g., the resource theories of entanglement and coherence have found use and implications in the study of quantum thermodynamics and memory effects in quantum dynamics. In this paper, we introduce the resource theory of unextendibility, which is associated with the inability of extending quantum entanglement in a given quantum state to multiple parties. The free states in this resource theory are the k-extendible states, and the free channels are k-extendible channels, which preserve the class of k-extendible states. We make use of this resource theory to derive nonasymptotic, upper bounds on the rate at which quantum communication or entanglement preservation is possible by utilizing an arbitrary quantum channel a finite number of times, along with the assistance of k-extendible channels at no cost. We then show that the bounds obtained are significantly tighter than previously known bounds for quantum communication over both the depolarizing and erasure channels.

[1]  Braunstein,et al.  Multipartite entanglement for continuous variables: A quantum teleportation network , 1999, Physical review letters.

[2]  D. Bruß,et al.  Optimal universal and state-dependent quantum cloning , 1997, quant-ph/9705038.

[3]  T. Beth,et al.  Codes for the quantum erasure channel , 1996, quant-ph/9610042.

[4]  Jay M. Gambetta,et al.  Building logical qubits in a superconducting quantum computing system , 2015, 1510.04375.

[5]  P. Parrilo,et al.  Distinguishing separable and entangled states. , 2001, Physical review letters.

[6]  R. Werner An application of Bell's inequalities to a quantum state extension problem , 1989 .

[7]  C. H. Bennett,et al.  Capacities of Quantum Erasure Channels , 1997, quant-ph/9701015.

[8]  R. Renner,et al.  One-shot classical-quantum capacity and hypothesis testing. , 2010, Physical review letters.

[9]  Mark M. Wilde,et al.  Fundamental limits on the capacities of bipartite quantum interactions , 2018, Physical review letters.

[10]  Schumacher,et al.  Sending entanglement through noisy quantum channels. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[11]  Eneet Kaur,et al.  Amortized entanglement of a quantum channel and approximately teleportation-simulable channels , 2017, ArXiv.

[12]  Dmitri Maslov,et al.  Experimental comparison of two quantum computing architectures , 2017, Proceedings of the National Academy of Sciences.

[13]  M. Nielsen,et al.  Information transmission through a noisy quantum channel , 1997, quant-ph/9702049.

[14]  Mario Berta,et al.  Quantum coding with finite resources , 2015, Nature Communications.

[15]  Nilanjana Datta,et al.  Min- and Max-Relative Entropies and a New Entanglement Monotone , 2008, IEEE Transactions on Information Theory.

[16]  Saikat Guha,et al.  The Squashed Entanglement of a Quantum Channel , 2013, IEEE Transactions on Information Theory.

[17]  S. Lloyd Capacity of the noisy quantum channel , 1996, quant-ph/9604015.

[18]  Blake R. Johnson,et al.  Simple all-microwave entangling gate for fixed-frequency superconducting qubits. , 2011, Physical review letters.

[19]  A. Uhlmann The "transition probability" in the state space of a ∗-algebra , 1976 .

[20]  Schumacher,et al.  Quantum data processing and error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[21]  Andreas J. Winter,et al.  “Pretty Strong” Converse for the Quantum Capacity of Degradable Channels , 2013, IEEE Transactions on Information Theory.

[22]  William Matthews,et al.  Finite Blocklength Converse Bounds for Quantum Channels , 2012, IEEE Transactions on Information Theory.

[23]  Howard Barnum,et al.  On quantum fidelities and channel capacities , 2000, IEEE Trans. Inf. Theory.

[24]  Eric M. Rains A semidefinite program for distillable entanglement , 2001, IEEE Trans. Inf. Theory.

[25]  Nilanjana Datta,et al.  Max- Relative Entropy of Entanglement, alias Log Robustness , 2008, 0807.2536.

[26]  S. Guha,et al.  Fundamental rate-loss tradeoff for optical quantum key distribution , 2014, Nature Communications.

[27]  Sean D Barrett,et al.  Fault tolerant quantum computation with very high threshold for loss errors. , 2010, Physical review letters.

[28]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[29]  Nilanjana Datta,et al.  The Quantum Capacity of Channels With Arbitrarily Correlated Noise , 2009, IEEE Transactions on Information Theory.

[30]  Pawel Horodecki,et al.  A simple test for quantum channel capacity , 2005, quant-ph/0503070.

[31]  Le Phuc Thinh,et al.  Optimizing practical entanglement distillation , 2018, Physical Review A.

[32]  V. Scarani,et al.  Quantum cloning , 2005, quant-ph/0511088.

[33]  Mario Berta,et al.  Converse Bounds for Private Communication Over Quantum Channels , 2016, IEEE Transactions on Information Theory.

[34]  Andreas J. Winter,et al.  The Quantum Capacity With Symmetric Side Channels , 2008, IEEE Transactions on Information Theory.

[35]  D. Leung,et al.  Quantum and private capacities of low-noise channels , 2017, 2017 IEEE Information Theory Workshop (ITW).

[36]  V. Giovannetti,et al.  Degradability of bosonic Gaussian channels , 2006, quant-ph/0603257.

[37]  Laura Mančinska,et al.  Everything You Always Wanted to Know About LOCC (But Were Afraid to Ask) , 2012, 1210.4583.

[38]  E. Rains Bound on distillable entanglement , 1998, quant-ph/9809082.

[39]  H. Vincent Poor,et al.  Channel Coding Rate in the Finite Blocklength Regime , 2010, IEEE Transactions on Information Theory.

[40]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[41]  Yongmei Huang,et al.  Satellite-to-ground quantum key distribution , 2017, Nature.

[42]  Marcos Curty,et al.  One-way quantum key distribution: Simple upper bound on the secret key rate , 2006 .

[43]  Ilya Dumer,et al.  Thresholds for Correcting Errors, Erasures, and Faulty Syndrome Measurements in Degenerate Quantum Codes. , 2014, Physical review letters.

[44]  Alexander S. Holevo,et al.  Entanglement-breaking channels in infinite dimensions , 2008, Probl. Inf. Transm..

[45]  Igor Devetak The private classical capacity and quantum capacity of a quantum channel , 2005, IEEE Transactions on Information Theory.

[46]  Giulio Chiribella,et al.  Realization schemes for quantum instruments in finite dimensions , 2008, 0810.3211.

[47]  F. Brandão,et al.  Reversible Framework for Quantum Resource Theories. , 2015, Physical review letters.

[48]  Cerf,et al.  Pauli cloning of a quantum Bit , 2000, Physical review letters.

[49]  P. Parrilo,et al.  Complete family of separability criteria , 2003, quant-ph/0308032.