The mathematical approach to the sonic barrier

[1]  S. Osher,et al.  Stable and entropy satisfying approximations for transonic flow calculations , 1980 .

[2]  L. Cook A uniqueness proof for a transonic flow problem , 1978 .

[3]  Richard Courant,et al.  Supersonic Flow And Shock Waves , 1948 .

[4]  Friedrich Ringleb,et al.  Exakte Lösungen der Differentialgleichungen einer adiabatischen Gasströmung , 1940 .

[5]  T. Kármán The engineer grapples with nonlinear problems , 1940 .

[6]  A. Jameson Iterative solution of transonic flows over airfoils and wings, including flows at mach 1 , 1974 .

[7]  C. Morawetz The dirichlet problem for the tricomi equation , 1970 .

[8]  H. Yoshihara,et al.  Inviscid transonic flow over airfoils , 1970 .

[9]  H. H. Pearcey,et al.  THE AERODYNAMIC DESIGN OF SECTION SHAPES FOR SWEPT WINGS , 1962 .

[10]  L Howarth,et al.  Mathematical Aspects of Subsonic and Transonic Gas Dynamics , 1959 .

[11]  Gottfried Guderley,et al.  On the Presence of Shocks in Mixed Subsonic-Supersonic Flow Patterns , 1953 .

[12]  R. T. Whitcomb,et al.  Review of NASA supercritical airfoils , 1974 .

[13]  P. Germain,et al.  4 Écoulements transsoniques homogènes , 1964 .

[14]  Cathleen S. Morawetz,et al.  On the non‐existence of continuous transonic flows past profiles II , 1956 .

[15]  D. Gilbarg Comparison Methods in the Theory of Subsonic Flows , 1953 .

[16]  M. Shiffman On the Existence of Subsonic Flows of a Compressible Fluid. , 1952, Proceedings of the National Academy of Sciences of the United States of America.

[17]  L. Rayleigh I. On the flow of compressible fluid past an obstacle , 1916 .

[18]  The hodograph method in fluid-dynamics in the light of variational inequalities , 1976 .

[19]  M. Mock,et al.  Systems of conservation laws of mixed type , 1980 .

[20]  O. Oleinik,et al.  QUASI-LINEAR SECOND-ORDER PARABOLIC EQUATIONS WITH MANY INDEPENDENT VARIABLES , 1961 .

[21]  J. Cole,et al.  Calculation of plane steady transonic flows , 1970 .

[22]  J. Craggs,et al.  ON THE HODOGRAPH TRANSFORMATION FOR HIGH-SPEED FLOW , 1948 .

[23]  Calcul D’ecoulements Transoniques Par des Methodes D’elements Finis et de Controle Optimal , 1976 .

[24]  C. Morawetz A weak solution for a system of equations of elliptic-hyperbolic type† , 1958 .

[25]  M. Lighthill The hodograph transformation in trans-sonic flow. III. Flow round a body , 1947, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[26]  Frances Bauer,et al.  A Theory of Supercritical Wing Sections, with Computer Programs and Examples , 1972 .

[27]  Lipman Bers,et al.  Existence and uniqueness of a subsonic flow past a given profile , 1954 .

[28]  Kurt Friedrichs,et al.  Symmetric positive linear differential equations , 1958 .

[29]  P. Goorjian,et al.  Implicit Finite-Difference Computations of Unsteady Transonic Flows about Airfoils , 1977 .

[30]  Modern Developments in Transonic Flow , 1975 .

[31]  G. Temple,et al.  Flow of a compressible fluid about a cylinder , 1947, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[32]  P. Garabedian,et al.  Design of supercritical swept wings , 1982 .

[33]  H. Sobieczky,et al.  Shock-Free Wing Design , 1980 .

[34]  S. Kružkov FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .

[35]  The hodograph method for convex profiles , 1982 .

[36]  Robert Thomas Jones,et al.  High speed wing theory , 1960 .

[37]  G. Y. Nieuwland The computation by Lighthill's method of transonic potential flow around a family of quasi-elliptical aerofoils , 1963 .