A two-stage representation of DFT and its applications
暂无分享,去创建一个
[1] S. Winograd. On computing the Discrete Fourier Transform. , 1976, Proceedings of the National Academy of Sciences of the United States of America.
[2] Okan K. Ersoy,et al. Real discrete Fourier transform , 1985, IEEE Trans. Acoust. Speech Signal Process..
[3] Okan K. Ersoy,et al. Image recognition with the discrete rectangular-wave transform , 1988 .
[4] C. Sidney Burrus,et al. On the number of multiplications necessary to compute a length-2nDFT , 1986, IEEE Trans. Acoust. Speech Signal Process..
[5] T. Parks,et al. A prime factor FFT algorithm using high-speed convolution , 1977 .
[6] Nasir Ahmed,et al. On a Real-Time Walsh-Hadamard/Cosine Transform Image Processor , 1978, IEEE Transactions on Electromagnetic Compatibility.
[7] S. Winograd. On the multiplicative complexity of the Discrete Fourier Transform , 1979 .
[8] A. F. Möbius,et al. Über eine besondere Art von Umkehrung der Reihen. , 1832 .
[9] O . Ersoy. A Real Formalism Of Discrete Fourier Transform In Terms Of Skew-Circular Correlations And Its Computation By Fast Correlation Techniques , 1983, Optics & Photonics.
[10] Okan K. Ersoy. Semisystolic Array Implementation of Circular, Skew Circular, and Linear Convolutions , 1985, IEEE Transactions on Computers.
[11] O. Ersoy. Hybrid Optical Implementation Of A Real Formalism Of Discrete Fourier Transform In Terms Of Circular Correlations , 1983, Optics & Photonics.
[12] Yoshiaki Tadokoro,et al. Another discrete Fourier transform computation with small multiplications via the Walsh transform , 1981, ICASSP.
[13] C. Burrus,et al. Fast Convolution using fermat number transforms with applications to digital filtering , 1974 .