Comparative Study of Two Different TiO2 Film Sensors on Response to H2 under UV Light and Room Temperature

An anatase TiO2 film sensor was prepared by a facile in-situ method on the interdigitated Au electrode deposited on the alumina substrate. The structure, morphology and the optical properties of the in-situ TiO2 film sensor were characterized by X-ray diffraction, Scanning Electron Microscopy, and UV-vis diffuse reflectance spectra. The photo-assisted gas sensitivities of the prepared film towards H2 gas were evaluated at room temperature in N2 and synthetic air atmospheres. As compared to TiO2 film sensor prepared by drop-coating method, this in-situ TiO2 film sensor exhibited a more compact structure composed of uniform TiO2 microspheres as well as a better gas sensitivity towards H2 under UV irradiation, especially in synthetic air. The photo-electrochemical measurements suggest that these improvements may be associated with the efficient charge transfer in the TiO2 interface induced by the TiO2 microsphere structure. This study might offer a feasible approach to develop photo-assisted gas sensors at ambient temperature.

[1]  Eduard Llobet,et al.  On the selectivity of nanostructured semiconductor gas sensors , 2007 .

[2]  Craig A. Grimes,et al.  Fabrication of hydrogen sensors with transparent titanium oxide nanotube-array thin films as sensing elements , 2006 .

[3]  Xianzhi Fu,et al.  Correlation between donating or accepting electron behavior of the adsorbed CO or H2 and its oxidation over TiO2 under ultraviolet light irradiation , 2016 .

[4]  Junmin Lee,et al.  Highly mobile palladium thin films on an elastomeric substrate: nanogap-based hydrogen gas sensors. , 2011, Angewandte Chemie.

[5]  Joan Ramon Morante,et al.  Study of La and Cu influence on the growth inhibition and phase transformation of nano-TiO2 used for gas sensors , 2004 .

[6]  Yueming Li,et al.  P25-graphene composite as a high performance photocatalyst. , 2010, ACS nano.

[7]  María de la luz Olvera Amador,et al.  A simple and cost-effective zinc oxide thin film sensor for propane gas detection , 2015 .

[8]  P. Tsiakaras,et al.  Application of Solid oxide proton-conducting electrolytes for amperometric analysis of hydrogen in H2+N2+H2O gas mixtures , 2014 .

[9]  N. Yamazoe,et al.  Oxide Semiconductor Gas Sensors , 2003 .

[10]  Il-Doo Kim,et al.  Pd-doped TiO2 nanofiber networks for gas sensor applications , 2010 .

[11]  R. M. Walton,et al.  Resistance measurements of platinum-titania thin film gas detectors in ultra-high vacuum (UHV) and reactive ion etcher (RIE) systems , 1997 .

[12]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[13]  Craig A. Grimes,et al.  A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications , 2006 .

[14]  Michael Grätzel,et al.  Photoelectrochemical cells , 2001, Nature.

[15]  Panagiotis Tsiakaras,et al.  A simple and low-cost amperometric sensor for measuring H 2 , CO, and CH 4 , 2015 .

[16]  Jing Bai,et al.  Titanium dioxide nanomaterials for sensor applications. , 2014, Chemical reviews.

[17]  Pramod K. Singh,et al.  Dip coated nanostructured ZnO thin film: Synthesis and application , 2016 .

[18]  Flexible H2 sensor fabricated by layer-by-layer self-assembly of thin films of polypyrrole and modified in situ with Pt nanoparticles , 2011 .

[19]  Ulrich Banach,et al.  Hydrogen Sensors - A review , 2011 .

[20]  Xianzhi Fu,et al.  Promoted effect of PANI as electron transfer promoter on CO oxidation over Au/TiO2 , 2014 .

[21]  Maurizio Martino,et al.  Acetone and ethanol solid-state gas sensors based on TiO2 nanoparticles thin film deposited by matrix assisted pulsed laser evaporation , 2007 .

[22]  Liwei Lin,et al.  An electrothermal carbon nanotube gas sensor. , 2007, Nano letters.

[23]  Vincenzo Guidi,et al.  Doping of a nanostructured titania thick film: structural and electrical investigations , 2000 .

[24]  Banshi D. Gupta,et al.  Fiber optic hydrogen sulfide gas sensors utilizing ZnO thin film/ZnO nanoparticles: A comparison of surface plasmon resonance and lossy mode resonance , 2015 .

[25]  T. Goto,et al.  Preparation of γ-Al2O3 films by laser chemical vapor deposition , 2015 .

[26]  Andrew Mills,et al.  An overview of semiconductor photocatalysis , 1997 .

[27]  Craig A. Grimes,et al.  Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes , 2006 .

[28]  Xuxu Wang,et al.  Gas sensing property of ZnO under visible light irradiation at room temperature , 2013 .

[29]  G. L. Sharma,et al.  Mechanism of highly sensitive and fast response Cr doped TiO2 oxygen gas sensor , 1997 .

[30]  K. Sumathy,et al.  A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production , 2007 .

[31]  Kengo Shimanoe,et al.  Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor , 2001 .

[32]  Alireza Nikfarjam,et al.  Improvement in gas-sensing properties of TiO2 nanofiber sensor by UV irradiation , 2015 .

[33]  A. Taurino,et al.  Biphase TiO2 Microspheres with Enhanced Photocatalytic Activity , 2014 .

[34]  Jun Dai,et al.  Enhanced visible-light photocatalytic activity for selective oxidation of amines into imines over TiO2(B)/anatase mixed-phase nanowires , 2015 .

[35]  Vladimir M. Aroutiounian,et al.  Metal oxide hydrogen, oxygen, and carbon monoxide sensors for hydrogen setups and cells , 2007 .

[36]  D. Fray,et al.  The titanium/hydrogen system as the solid-state reference in high-temperature proton conductor-based hydrogen sensors , 2006 .

[37]  Qinghong Zhang,et al.  CdS-graphene and CdS-CNT nanocomposites as visible-light photocatalysts for hydrogen evolution and organic dye degradation , 2012 .

[38]  Linhua Hu,et al.  TiO2 nanocrystalline layer as a bridge linking TiO2 sub-microspheres layer and substrates for high-efficiency dye-sensitized solar cells , 2014 .

[39]  T. Albanis,et al.  TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations A review , 2004 .

[40]  G. Sberveglieri,et al.  Photosensitivity activation of SnO2 thin film gas sensors at room temperature , 1996 .

[41]  Byeong Kwon Ju,et al.  Micromachined catalytic combustible hydrogen gas sensor , 2011 .

[42]  R. Dwivedi,et al.  Sensing properties of palladium-gate MOS (Pd-MOS) hydrogen sensor-based on plasma grown silicon dioxide , 2000 .

[43]  Hikaru Kobayashi,et al.  Mechanism of hydrogen sensing by Pd/TiO2 Schottky diodes , 1993 .

[44]  Changsheng Xie,et al.  A comparative study on UV light activated porous TiO2 and ZnO film sensors for gas sensing at room temperature , 2012 .

[45]  C. Sarkar,et al.  Studies on a resistive gas sensor based on sol–gel grown nanocrystalline p-TiO2 thin film for fast hydrogen detection , 2013 .

[46]  J. Homola Surface plasmon resonance sensors for detection of chemical and biological species. , 2008, Chemical reviews.

[47]  Xue Wang,et al.  UV sensor based on TiO2 nanorod arrays on FTO thin film , 2011 .

[48]  C. Schwandt,et al.  The zirconium/hydrogen system as the solid-state reference of a high-temperature proton conductor-based hydrogen sensor , 2006 .

[49]  Patrik Schmuki,et al.  TiO2 nanotubes: synthesis and applications. , 2011, Angewandte Chemie.

[50]  Duong Tuan Quang,et al.  Facile synthesis of α-Fe2O3 nanoparticles for high-performance CO gas sensor , 2015 .

[51]  Danzhen Li,et al.  Titanium Dioxide Photonic Crystals with Enhanced Photocatalytic Activity: Matching Photonic Band Gaps of TiO2 to the Absorption Peaks of Dyes , 2013 .

[52]  J. Vörös,et al.  Electrochemical Biosensors - Sensor Principles and Architectures , 2008, Sensors.

[53]  François Blais Review of 20 years of range sensor development , 2004, J. Electronic Imaging.

[54]  Marian Mikula,et al.  Fast highly-sensitive room-temperature semiconductor gas sensor based on the nanoscale Pt-TiO2-Pt sandwich , 2015 .

[55]  Marianna Kemell,et al.  Hydrogen sensor of Pd-decorated tubular TiO2 layer prepared by anodization with patterned electrodes on SiO2/Si substrate , 2016 .

[56]  J. Noh,et al.  Nanogap-based electrical hydrogen sensors fabricated from Pd-PMMA hybrid thin films , 2014 .

[57]  Won Mi Choi,et al.  Synthesis of Al-doped ZnO Nanorods via Microemulsion Method and Their Application as a CO Gas Sensor , 2015 .

[58]  Ren-Jang Wu,et al.  Fast ozone detection by using a core–shell Au@TiO2 sensor at room temperature , 2015 .

[59]  B. C. Yadav,et al.  Synthesis of ZnO nanopetals and its application as NO2 gas sensor , 2015 .

[60]  Xianzhi Fu,et al.  A green and facile self-assembly preparation of gold nanoparticles/ZnO nanocomposite for photocatalytic and photoelectrochemical applications , 2012 .

[61]  Yamato Asakura,et al.  Prospect of hydrogen technology using proton-conducting ceramics , 2004 .

[62]  Xiaoyun Li,et al.  A comparative study on the quantum-dot-sensitized, dye-sensitized and co-sensitized solar cells based on hollow spheres embedded porous TiO2 photoanodes , 2015 .

[63]  Matteo Ferroni,et al.  Response to ethanol of thin films based on Mo and Ti oxides deposited by sputtering , 2003 .

[64]  Yulin Deng,et al.  UV-Light-Activated ZnO Fibers for Organic Gas Sensing at Room Temperature , 2010 .