30th International Symposium on Algorithms and Computation, ISAAC 2019, December 8-11, 2019, Shanghai University of Finance and Economics, Shanghai, China

Graph search, the process of visiting vertices in a graph in a specific order, has demonstrated magical powers in many important algorithms. But a systematic study was only initiated by Corneil et al. a decade ago, and only by then we started to realize how little we understand it. Even the apparently naïve question “which vertex can be the last visited by a graph search algorithm,” known as the end vertex problem, turns out to be quite elusive. We give a full picture of all maximum cardinality searches on chordal graphs, which implies a polynomial-time algorithm for the end vertex problem of maximum cardinality search. It is complemented by a proof of NP-completeness of the same problem on weakly chordal graphs. We also show linear-time algorithms for deciding end vertices of breadth-first searches on interval graphs, and end vertices of lexicographic depth-first searches on chordal graphs. Finally, we present 2 · nO(1)-time algorithms for deciding the end vertices of breadth-first searches, depth-first searches, and maximum cardinality searches on general graphs. 2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

[1]  Jinhui Xu,et al.  FPTAS for Minimizing Earth Mover's Distance under Rigid Transformations , 2013, ESA.

[2]  Aleksandar Stojmirovic,et al.  Geometric Aspects of Biological Sequence Comparison , 2009, J. Comput. Biol..

[3]  Jirí Matousek,et al.  How to net a lot with little: small ε-nets for disks and halfspaces , 1990, SCG '90.

[4]  Wing-Kai Hon,et al.  Dynamic dictionary matching and compressed suffix trees , 2005, SODA '05.

[5]  Micha A. Perles,et al.  Blockers for Noncrossing Spanning Trees in Complete Geometric Graphs , 2013 .

[6]  Horst W. Hamacher,et al.  An optimal O(nlogn) algorithm for finding an enclosing planar rectilinear annulus of minimum width , 2009, Oper. Res. Lett..

[7]  Shaojie Tang,et al.  No Time to Observe: Adaptive Influence Maximization with Partial Feedback , 2016, IJCAI.

[8]  Laks V. S. Lakshmanan,et al.  Information and Influence Propagation in Social Networks , 2013, Synthesis Lectures on Data Management.

[9]  Weili Wu,et al.  On Bharathi–Kempe–Salek conjecture for influence maximization on arborescence , 2016, J. Comb. Optim..

[10]  Wojciech Rytter,et al.  Internal Pattern Matching Queries in a Text and Applications , 2013, SODA.

[11]  Amir Abboud,et al.  Tight Hardness Results for LCS and Other Sequence Similarity Measures , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[12]  Richard Cole,et al.  Dictionary matching and indexing with errors and don't cares , 2004, STOC '04.

[13]  S. Muthukrishnan,et al.  On the sorting-complexity of suffix tree construction , 2000, JACM.

[14]  Gad M. Landau,et al.  Incremental String Comparison , 1998, SIAM J. Comput..

[15]  Christian Borgs,et al.  Maximizing Social Influence in Nearly Optimal Time , 2012, SODA.

[16]  Micha A. Perles,et al.  Blockers for Simple Hamiltonian Paths in Convex Geometric Graphs of Even Order , 2018, Discret. Comput. Geom..

[17]  Janardhan Kulkarni,et al.  New -Net Constructions , 2010 .

[18]  Shishir Bharathi,et al.  Competitive Influence Maximization in Social Networks , 2007, WINE.

[19]  Wei Chen,et al.  Adaptive Influence Maximization with Myopic Feedback , 2019, NeurIPS.

[20]  Robert E. Tarjan,et al.  A Linear-Time Algorithm for a Special Case of Disjoint Set Union , 1985, J. Comput. Syst. Sci..

[21]  Sariel Har-Peled A replacement for Voronoi diagrams of near linear size , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[22]  Farzaneh Nasirian,et al.  Exact algorithms for the minimum cost vertex blocker clique problem , 2019, Comput. Oper. Res..

[23]  Yaron Singer,et al.  Influence maximization through adaptive seeding , 2016, SECO.

[24]  Xiaokui Xiao,et al.  Influence Maximization in Near-Linear Time: A Martingale Approach , 2015, SIGMOD Conference.

[25]  Nicola Barbieri,et al.  Topic-Aware Social Influence Propagation Models , 2012, ICDM.

[26]  Karl Bringmann,et al.  Why Walking the Dog Takes Time: Frechet Distance Has No Strongly Subquadratic Algorithms Unless SETH Fails , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[27]  Anupam Gupta,et al.  Adaptivity Gaps for Stochastic Probing: Submodular and XOS Functions , 2016, SODA.

[28]  Esther Ezra,et al.  A note about weak epsilon-nets for axis-parallel boxes in d-space , 2010, Inf. Process. Lett..

[29]  Cristopher Moore,et al.  Hard Tiling Problems with Simple Tiles , 2001, Discret. Comput. Geom..

[30]  Piotr Indyk,et al.  Combinatorial and Experimental Methods for Approximate Point Pattern Matching , 2003, Algorithmica.

[31]  Wei Chen,et al.  Scalable influence maximization for prevalent viral marketing in large-scale social networks , 2010, KDD.

[32]  D. de Werra,et al.  Blockers and transversals in some subclasses of bipartite graphs: When caterpillars are dancing on a grid , 2010, Discret. Math..

[33]  Joseph S. B. Mitchell,et al.  Practical methods for approximate geometric pattern matching under rigid motions: (preliminary version) , 1994, SCG '94.

[34]  Weili Wu,et al.  Solution of Bharathi–Kempe–Salek conjecture for influence maximization on arborescence , 2017, J. Comb. Optim..

[35]  Timothy M. Chan,et al.  An improved approximation algorithm for the discrete Fréchet distance , 2018, Inf. Process. Lett..

[36]  Klara Kedem,et al.  On Some Geometric Selection and Optimization Problems via Sorted Matrices , 1995, WADS.

[37]  Micha Sharir,et al.  The upper envelope of voronoi surfaces and its applications , 1993, Discret. Comput. Geom..

[38]  Philip S. Yu,et al.  Multi-Round Influence Maximization , 2018, KDD.

[39]  Eduardo L. Pasiliao,et al.  Minimum edge blocker dominating set problem , 2015, Eur. J. Oper. Res..

[40]  Utpal Roy,et al.  Establishment of a pair of concentric circles with the minimum radial separation for assessing roundness error , 1992, Comput. Aided Des..

[41]  Wolfgang Mulzer,et al.  APPROXIMABILITY OF THE DISCRETE FRÉCHET , 2016 .

[42]  Monika Henzinger,et al.  Unifying and Strengthening Hardness for Dynamic Problems via the Online Matrix-Vector Multiplication Conjecture , 2015, STOC.

[43]  Artur Jez,et al.  Faster Fully Compressed Pattern Matching by Recompression , 2011, ICALP.

[44]  Jinhui Xu,et al.  Large-scale probabilistic 3D organization of human chromosome territories. , 2016, Human molecular genetics.

[45]  Mike Paterson,et al.  A Faster Algorithm Computing String Edit Distances , 1980, J. Comput. Syst. Sci..

[46]  Robert E. Tarjan,et al.  Fast Algorithms for Finding Nearest Common Ancestors , 1984, SIAM J. Comput..

[47]  David Haussler,et al.  ɛ-nets and simplex range queries , 1987, Discret. Comput. Geom..

[48]  Alfred V. Aho,et al.  Efficient string matching , 1975, Commun. ACM.

[49]  Ken-ichi Kawarabayashi,et al.  Adaptive Budget Allocation for Maximizing Influence of Advertisements , 2016, IJCAI.

[50]  Michael J. Fischer,et al.  The String-to-String Correction Problem , 1974, JACM.

[51]  Kenneth L. Clarkson,et al.  Improved Approximation Algorithms for Geometric Set Cover , 2007, Discret. Comput. Geom..

[52]  Shaojie Tang,et al.  Adaptive Influence Maximization in Dynamic Social Networks , 2015, IEEE/ACM Transactions on Networking.

[53]  Wojciech Rytter,et al.  Extracting powers and periods in a word from its runs structure , 2014, Theor. Comput. Sci..

[54]  Daniël Paulusma,et al.  Reducing the Clique and Chromatic Number via Edge Contractions and Vertex Deletions , 2016, ISCO.

[55]  William Kuszmaul,et al.  Dynamic Time Warping in Strongly Subquadratic Time: Algorithms for the Low-Distance Regime and Approximate Evaluation , 2019, ICALP.

[56]  Jun-Ming Xu,et al.  Domination and Total Domination Contraction Numbers of Graphs , 2010, Ars Comb..

[57]  Jinhui Xu,et al.  Gauging Association Patterns of Chromosome Territories via Chromatic Median , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[58]  Andreas Krause,et al.  Cost-effective outbreak detection in networks , 2007, KDD '07.

[59]  Bernard Ries,et al.  Reducing the domination number of graphs via edge contractions , 2019, MFCS.

[60]  Sandip Das,et al.  Minimum Width Rectangular Annulus , 2011, FAW-AAIM.

[61]  Matthias Henze,et al.  On the complexity of the partial least-squares matching Voronoi diagram , 2013 .

[62]  Sahil Singla,et al.  (Near) Optimal Adaptivity Gaps for Stochastic Multi-Value Probing , 2019, APPROX-RANDOM.

[63]  Leonidas J. Guibas,et al.  Discrete Geometric Shapes: Matching, Interpolation, and Approximation , 2000, Handbook of Computational Geometry.

[64]  Michael A. Bender,et al.  The Level Ancestor Problem Simplified , 2002, LATIN.

[65]  Ken-ichi Kawarabayashi,et al.  Optimal Budget Allocation: Theoretical Guarantee and Efficient Algorithm , 2014, ICML.

[66]  Pierre-François Marteau,et al.  Time Warp Edit Distance with Stiffness Adjustment for Time Series Matching , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[67]  Yuchen Li,et al.  Influence Maximization on Social Graphs: A Survey , 2018, IEEE Transactions on Knowledge and Data Engineering.

[68]  Tomasz Kociumaka Efficient data structures for internal queries in texts , 2019 .

[69]  Gwénaël Richomme,et al.  Counting distinct palindromes in a word in linear time , 2010, Inf. Process. Lett..

[70]  Arseny M. Shur,et al.  Counting Palindromes in Substrings , 2017, SPIRE.

[71]  Éva Tardos,et al.  Maximizing the Spread of Influence through a Social Network , 2015, Theory Comput..

[72]  Daniël Paulusma,et al.  Contraction and Deletion Blockers for Perfect Graphs and $H$-free Graphs , 2017, Theor. Comput. Sci..

[73]  Dominique de Werra,et al.  Minimum d-blockers and d-transversals in graphs , 2011, J. Comb. Optim..

[74]  Kyle Fox,et al.  Approximating Dynamic Time Warping and Edit Distance for a Pair of Point Sequences , 2015, SoCG.

[75]  Daniël Paulusma,et al.  Blocking Independent Sets for H-Free Graphs via Edge Contractions and Vertex Deletions , 2017, TAMC.

[76]  Jinhui Xu,et al.  k-Prototype Learning for 3D Rigid Structures , 2013, NIPS.

[77]  John C. S. Lui,et al.  Boosting Information Spread: An Algorithmic Approach , 2016, 2017 IEEE 33rd International Conference on Data Engineering (ICDE).

[78]  Jinhui Xu,et al.  On Clustering Induced Voronoi Diagrams , 2017, SIAM J. Comput..

[79]  Moshe Lewenstein,et al.  Generalized Substring Compression , 2009, CPM.

[80]  Orit E. Raz,et al.  Partial-Matching and Hausdorff RMS Distance Under Translation: Combinatorics and Algorithms , 2014, ArXiv.

[81]  Michalis Vazirgiannis,et al.  Adaptive Submodular Influence Maximization with Myopic Feedback , 2018, 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM).

[82]  I Tomohiro,et al.  Longest Common Extensions with Recompression , 2016, CPM.

[83]  Daniël Paulusma,et al.  Critical Vertices and Edges in $H$-free Graphs , 2017, Discret. Appl. Math..

[84]  Jan Vondrák,et al.  Maximizing a Monotone Submodular Function Subject to a Matroid Constraint , 2011, SIAM J. Comput..

[85]  Jeffrey Scott Vitter,et al.  Fast Construction of Wavelet Trees , 2014, SPIRE.

[86]  Jerzy W. Jaromczyk,et al.  The Two-Line Center Problem from a Polar View: A New Algorithm and Data Structure , 1995, WADS.

[87]  Michael E. Saks,et al.  Approximating Edit Distance within Constant Factor in Truly Sub-Quadratic Time , 2018, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).

[88]  Arnold P. Boedihardjo,et al.  Model-driven matching and segmentation of trajectories , 2013, SIGSPATIAL/GIS.

[89]  Daniel Vanderpooten,et al.  Critical edges for the assignment problem: Complexity and exact resolution , 2013, Oper. Res. Lett..

[90]  Daniël Paulusma,et al.  Contraction Blockers for Graphs with Forbidden Induced Paths , 2015, CIAC.

[91]  Sunil Arya,et al.  Space-time tradeoffs for approximate nearest neighbor searching , 2009, JACM.

[92]  Marvin Künnemann,et al.  Quadratic Conditional Lower Bounds for String Problems and Dynamic Time Warping , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[93]  Esko Ukkonen,et al.  Algorithms for Approximate String Matching , 1985, Inf. Control..

[94]  Lior Seeman,et al.  Adaptive Seeding in Social Networks , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[95]  D. de Werra,et al.  Weighted Transversals and Blockers for Some Optimization Problems in Graphs , 2011 .

[96]  Laks V. S. Lakshmanan,et al.  From Competition to Complementarity: Comparative Influence Diffusion and Maximization , 2015, Proc. VLDB Endow..

[97]  Mihai Pa caron,et al.  Unifying the Landscape of Cell-Probe Lower Bounds , 2011 .

[98]  Alejandro A. Schäffer,et al.  Improved dynamic dictionary matching , 1995, SODA '93.

[99]  Piotr Indyk,et al.  Edit Distance Cannot Be Computed in Strongly Subquadratic Time (unless SETH is false) , 2014, STOC.

[100]  Micha Sharir,et al.  Small-Size $\eps$-Nets for Axis-Parallel Rectangles and Boxes , 2010, SIAM J. Comput..

[101]  Jan Vondrák,et al.  Dependent Randomized Rounding via Exchange Properties of Combinatorial Structures , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[102]  Maxime Crochemore,et al.  Algorithms on strings , 2007 .

[103]  Günter Rote Partial Least-Squares Point Matching under Translations , 2010 .

[104]  Wei Chen,et al.  Efficient influence maximization in social networks , 2009, KDD.

[105]  Micha Sharir,et al.  Dynamic Time Warping and Geometric Edit Distance: Breaking the Quadratic Barrier , 2016, ICALP.

[106]  Wojciech Rytter,et al.  A Linear-Time Algorithm for Seeds Computation , 2011, SODA.

[107]  Anupam Gupta,et al.  Algorithms and Adaptivity Gaps for Stochastic Probing , 2016, SODA.

[108]  Zsolt Tuza,et al.  The most vital nodes with respect to independent set and vertex cover , 2011, Discret. Appl. Math..

[109]  Eamonn J. Keogh,et al.  Experimental comparison of representation methods and distance measures for time series data , 2010, Data Mining and Knowledge Discovery.

[110]  Lei Chen,et al.  Robust and fast similarity search for moving object trajectories , 2005, SIGMOD '05.

[111]  Sergio Cabello,et al.  On the parameterized complexity of d-dimensional point set pattern matching , 2006, Inf. Process. Lett..

[112]  Gad M. Landau,et al.  Dynamic text and static pattern matching , 2007, TALG.

[113]  Wei Chen,et al.  Scalable influence maximization for independent cascade model in large-scale social networks , 2012, Data Mining and Knowledge Discovery.

[114]  John Hershberger,et al.  Finding the Upper Envelope of n Line Segments in O(n log n) Time , 1989, Inf. Process. Lett..

[115]  Artur Jez,et al.  Recompression: a simple and powerful technique for word equations , 2012, STACS.

[116]  G. Toussaint Solving geometric problems with the rotating calipers , 1983 .

[117]  Gregory Kucherov,et al.  Finding maximal repetitions in a word in linear time , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[118]  S. Rao Kosaraju,et al.  A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields , 1995, JACM.

[119]  Hideo Bannai,et al.  Computing All Distinct Squares in Linear Time for Integer Alphabets , 2017, CPM.

[120]  Andreas Krause,et al.  Adaptive Submodularity: Theory and Applications in Active Learning and Stochastic Optimization , 2010, J. Artif. Intell. Res..

[121]  Sariel Har-Peled,et al.  Random partition via shifting , 2011 .

[122]  Alexandr Andoni,et al.  Polylogarithmic Approximation for Edit Distance and the Asymmetric Query Complexity , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[123]  Kaito Fujii,et al.  Beyond Adaptive Submodularity: Approximation Guarantees of Greedy Policy with Adaptive Submodularity Ratio , 2019, ICML.

[124]  Xiaokui Xiao,et al.  Influence maximization: near-optimal time complexity meets practical efficiency , 2014, SIGMOD Conference.

[125]  Lei Chen,et al.  On The Marriage of Lp-norms and Edit Distance , 2004, VLDB.

[126]  Raffaele Giancarlo,et al.  Dynamic Dictionary Matching , 1994, J. Comput. Syst. Sci..

[127]  János Komlós,et al.  Storing a sparse table with O(1) worst case access time , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[128]  Steven Skiena,et al.  Lowest common ancestors in trees and directed acyclic graphs , 2005, J. Algorithms.

[129]  S. Muthukrishnan,et al.  Efficient algorithms for document retrieval problems , 2002, SODA '02.