NEW LOWER BOUND TECHNIQUES FOR DYNAMIC PARTIAL SUMS AND RELATED PROBLEMS

We study the complexity of the dynamic partial sum problem in the cell-probe model. We give the model access to nondeterministic queries and prove that the problem remains hard. We give the model access to the right answer ±1 as an oracle and prove that the problem remains hard. This suggests which kind of information is hard to maintain. From these results, we derive a number of lower bounds for dynamic algorithms and data structures: We prove lower bounds for dynamic algorithms for existential range queries, reachability in directed graphs, planarity testing, planar point location, incremental parsing, and fundamental data structure problems like maintaining the majority of the prefixes of a string of bits. We prove a lower bound for reachability in grid graphs in terms of the graph’s width. We characterize the complexity of maintaining the value of any symmetric function on the prefixes of a bit string.

[1]  Michael L. Fredman Observations on the Complexity of Generating Quasi-Gray Codes , 1978, SIAM J. Comput..

[2]  Andrew Chi-Chih Yao,et al.  Should Tables Be Sorted? , 1981, JACM.

[3]  Michael L. Fredman,et al.  The Complexity of Maintaining an Array and Computing Its Partial Sums , 1982, JACM.

[4]  Franco P. Preparata,et al.  Computational Geometry , 1985, Texts and Monographs in Computer Science.

[5]  Andrew Chi-Chih Yao On the Complexity of Maintaining Partial Sums , 1985, SIAM J. Comput..

[6]  Johan Håstad,et al.  Almost optimal lower bounds for small depth circuits , 1986, STOC '86.

[7]  Shlomo Moran Generalized Lower Bounds Derived from Hastad's Main Lemma , 1987, Inf. Process. Lett..

[8]  Ingo Wegener,et al.  The Complexity of Symmetric Functions in Bounded-Depth Circuits , 1987, Inf. Process. Lett..

[9]  Miklós Ajtai,et al.  A lower bound for finding predecessors in Yao's cell probe model , 1988, Comb..

[10]  Roberto Tamassia,et al.  Fully Dynamic Point Location in a Monotone Subdivision , 1989, SIAM J. Comput..

[11]  Michael E. Saks,et al.  The cell probe complexity of dynamic data structures , 1989, STOC '89.

[12]  Paul F. Dietz Optimal Algorithms for List Indexing and Subset Rank , 1989, WADS.

[13]  Zvi Galil,et al.  Lower bounds for data structure problems on RAMs , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[14]  Kurt Mehlhorn,et al.  Dynamic point location in general subdivisions , 1992, SODA '92.

[15]  B. Xiao New bounds in cell probe model , 1992 .

[16]  Giuseppe F. Italiano,et al.  Fully Dynamic Planarity Testing in Planar Embedded Graphs (Extended Abstract) , 1993, ESA.

[17]  Peter Bro Miltersen,et al.  Complexity Models for Incremental Computation , 1994, Theor. Comput. Sci..

[18]  Thore Husfeldt Fully Dynamic Transitive Closure in Plane Dags with one Source and one Sink , 1994 .

[19]  Peter Bro Miltersen Lower bounds for union-split-find related problems on random access machines , 1994, STOC '94.

[20]  Peter Bro Miltersen,et al.  Dynamic Algorithms for the Dyck Languages , 1995, WADS.

[21]  Peter Bro Miltersen,et al.  On data structures and asymmetric communication complexity , 1994, STOC '95.

[22]  Thore Husfeldt,et al.  Lower Bounds for Dynamic Transitive Closure, Planar Point Location, and Parentheses Matching , 1996, SWAT.

[23]  Roberto Tamassia On-Line Planar Graph Embedding , 1996, J. Algorithms.

[24]  Gert Vegter,et al.  In handbook of discrete and computational geometry , 1997 .

[25]  Thore Husfeldt,et al.  Hardness Results for Dynamic Problems by Extensions of Fredman and Saks’ Chronogram Method , 1997 .

[26]  David Eppstein Dynamic Connectivity in Digital Images , 1997, Inf. Process. Lett..

[27]  Peter Bro Miltersen,et al.  Searching constant width mazes captures the AC 0 hierarchy , 1997 .

[28]  Monika Henzinger,et al.  Lower Bounds for Fully Dynamic Connectivity Problems in Graphs , 1995, Algorithmica.

[29]  Stephen Alstrup,et al.  Marked Ancestor Problems , 1998 .

[30]  Faith Ellen,et al.  Optimal Bounds for the Predecessor Problem and Related Problems , 2002, J. Comput. Syst. Sci..

[31]  Roberto Tamassia,et al.  Dynamic maintenance of planar digraphs, with applications , 1990, Algorithmica.