Soluble guanylate cyclase: a potential therapeutic target for heart failure

[1]  G. Filippatos,et al.  Treatment of acute decompensated heart failure with the soluble guanylate cyclase activator cinaciguat: The COMPOSE program – three randomized, controlled, phase IIb studies , 2011 .

[2]  J. Stasch,et al.  Measuring oxidative burden and predicting pharmacological response in coronary artery disease patients with a novel direct activator of haem-free/oxidised sGC. , 2011, Atherosclerosis.

[3]  J. Stasch,et al.  Additional stimulation of sGC on top of standard treatment with ARB`s may offer a new therapeutic approach for the treatment of diabetic nephropathy resistant to ARB treatment alone , 2011, BMC Pharmacology.

[4]  M. Gheorghiade,et al.  Improving postdischarge outcomes in patients hospitalized for acute heart failure syndromes. , 2011, JAMA.

[5]  Pál Pacher,et al.  Soluble guanylate cyclase as an emerging therapeutic target in cardiopulmonary disease. , 2011, Circulation.

[6]  T. Sugaya,et al.  Urinary L-type fatty acid-binding protein as a new renal biomarker in critical care , 2010, Current opinion in critical care.

[7]  T. Münzel,et al.  Is oxidative stress a therapeutic target in cardiovascular disease? , 2010, European heart journal.

[8]  J. Bauersachs,et al.  Guanylyl cyclase activator ataciguat improves vascular function and reduces platelet activation in heart failure. , 2010, Pharmacological research.

[9]  J. Stasch,et al.  Nitric oxide-independent stimulation of soluble guanylate cyclase reduces organ damage in experimental low-renin and high-renin models , 2010, Journal of hypertension.

[10]  J. Stasch,et al.  Structure of Cinaciguat (BAY 58–2667) Bound to Nostoc H-NOX Domain Reveals Insights into Heme-mimetic Activation of the Soluble Guanylyl Cyclase* , 2010, The Journal of Biological Chemistry.

[11]  D. Mozaffarian,et al.  Heart disease and stroke statistics--2010 update: a report from the American Heart Association. , 2010, Circulation.

[12]  R. Kitsis,et al.  Cell death in the pathogenesis of heart disease: mechanisms and significance. , 2010, Annual review of physiology.

[13]  J. Hansen,et al.  Soluble Guanylate Cyclase Agonists Inhibit Expression and Procoagulant Activity of Tissue Factor , 2009, Arteriosclerosis, thrombosis, and vascular biology.

[14]  J. Stasch,et al.  Acute hemodynamic response to single oral doses of BAY 60-4552, a soluble guanylate cyclase stimulator, in patients with biventricular heart failure , 2009, BMC Pharmacology.

[15]  J. Stasch,et al.  Cardioprotective effects in aged spontaneously hypertensive rats due to chronic stimulation/activation of sGC without hypotension , 2009, BMC Pharmacology.

[16]  J. Stasch,et al.  NO-insensitive sGCbeta1 H105F knockin mice: if NO has no place to go , 2009, BMC Pharmacology.

[17]  J. Stasch,et al.  Pressure-independent effects of pharmacological stimulation of soluble guanylate cyclase on fibrosis in pressure-overloaded rat heart , 2009, Hypertension Research.

[18]  HaraldLapp,et al.  Cinaciguat (BAY 58–2667) Improves Cardiopulmonary Hemodynamics in Patients With Acute Decompensated Heart Failure , 2009 .

[19]  I. Piña,et al.  Phase III clinical trial end points in acute heart failure syndromes: a virtual roundtable with the Acute Heart Failure Syndromes International Working Group. , 2009, American heart journal.

[20]  J. Stasch,et al.  Discovery of Riociguat (BAY 63‐2521): A Potent, Oral Stimulator of Soluble Guanylate Cyclase for the Treatment of Pulmonary Hypertension , 2009, ChemMedChem.

[21]  Rebecca A Betensky,et al.  Urinary Biomarkers for Sensitive and Specific Detection of Acute Kidney Injury in Humans , 2008, Clinical and translational science.

[22]  P. Vermeersch,et al.  Gender-specific hypertension and responsiveness to nitric oxide in sGCalpha1 knockout mice. , 2008, Cardiovascular research.

[23]  K. Amann,et al.  Blood Pressure-Independent Effect of Long-Term Treatment with the Soluble Heme-Independent Guanylyl Cyclase Activator HMR1766 on Progression in a Model of Noninflammatory Chronic Renal Damage , 2007, Kidney and Blood Pressure Research.

[24]  T. Münzel,et al.  Targeting heme-oxidized soluble guanylate cyclase: solution for all cardiorenal problems in heart failure? , 2007, Hypertension.

[25]  K. Swedberg,et al.  Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST Outcome Trial. , 2007, JAMA.

[26]  M. Gheorghiade,et al.  Prognostic markers in heart failure—congestion, neurohormones, and the cardiorenal syndrome , 2007, Acute cardiac care.

[27]  Nancy M Albert,et al.  Systolic blood pressure at admission, clinical characteristics, and outcomes in patients hospitalized with acute heart failure. , 2006, JAMA.

[28]  J. Stasch,et al.  Soluble Guanylate Cyclase Stimulation on Cardiovascular Remodeling in Angiotensin II–Induced Hypertensive Rats , 2006, Hypertension.

[29]  M. Gladwin Deconstructing endothelial dysfunction: soluble guanylyl cyclase oxidation and the NO resistance syndrome. , 2006, The Journal of clinical investigation.

[30]  O. V. Evgenov,et al.  NO-independent stimulators and activators of soluble guanylate cyclase: discovery and therapeutic potential , 2006, Nature Reviews Drug Discovery.

[31]  J. Stasch,et al.  Targeting the heme-oxidized nitric oxide receptor for selective vasodilatation of diseased blood vessels. , 2006, The Journal of clinical investigation.

[32]  J. Stasch,et al.  NO‐independent activation of soluble guanylate cyclase prevents disease progression in rats with 5/6 nephrectomy , 2006, British journal of pharmacology.

[33]  W. Linz,et al.  Biochemistry and Pharmacology of Novel Anthranilic Acid Derivatives Activating Heme-Oxidized Soluble Guanylyl Cyclase , 2006, Molecular Pharmacology.

[34]  Luigi Tavazzi,et al.  Acute Heart Failure Syndromes: Current State and Framework for Future Research , 2005, Circulation.

[35]  Rudolf Berger,et al.  Flow-mediated vasodilation predicts outcome in patients with chronic heart failure: comparison with B-type natriuretic peptide. , 2005, Journal of the American College of Cardiology.

[36]  H. Kawachi,et al.  Stimulation of soluble guanylate cyclase slows progression in anti-thy1-induced chronic glomerulosclerosis. , 2005, Kidney international.

[37]  C. Szabó,et al.  Nitrosative stress and pharmacological modulation of heart failure. , 2005, Trends in pharmacological sciences.

[38]  J. Stasch,et al.  Stimulation of soluble guanylyl cyclase inhibits mesangial cell proliferation and matrix accumulation in experimental glomerulonephritis. , 2005, American journal of physiology. Renal physiology.

[39]  Stuart D Katz,et al.  Vascular Endothelial Dysfunction and Mortality Risk in Patients With Chronic Heart Failure , 2005, Circulation.

[40]  J. Mair,et al.  Chronic heart failure is associated with vascular remodeling of the brachial artery , 2005, European journal of heart failure.

[41]  H. Neumayer,et al.  Expression and activity of soluble guanylate cyclase in injury and repair of anti-thy1 glomerulonephritis. , 2004, Kidney International.

[42]  U. Zabel,et al.  Reduced cGMP signaling associated with neointimal proliferation and vascular dysfunction in late-stage atherosclerosis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[43]  J. Bronzwaer,et al.  Nitric oxide's role in the heart: control of beating or breathing? , 2004, American journal of physiology. Heart and circulatory physiology.

[44]  S. Moncada,et al.  Antiinflammatory activity of soluble guanylate cyclase: cGMP-dependent down-regulation of P-selectin expression and leukocyte recruitment. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Massimo Chiariello,et al.  Endothelial Dysfunction and Cardiovascular Risk Prediction in Peripheral Arterial Disease: Additive Value of Flow-Mediated Dilation to Ankle-Brachial Pressure Index , 2003, Circulation.

[46]  A. Ignaszewski,et al.  The prognostic importance of endothelial dysfunction and carotid atheroma burden in patients with coronary artery disease. , 2003, Journal of the American College of Cardiology.

[47]  J. Balligand,et al.  Nitric Oxide and Cardiac Function: Ten Years After, and Continuing , 2003, Circulation research.

[48]  S. Higano,et al.  Abnormal coronary microvascular endothelial function in humans with asymptomatic left ventricular dysfunction. , 2003, American heart journal.

[49]  Steven P Jones,et al.  Endothelial nitric oxide synthase overexpression attenuates congestive heart failure in mice , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[50]  J. Stasch,et al.  Cardiorenal and Humoral Properties of a Novel Direct Soluble Guanylate Cyclase Stimulator BAY 41-2272 in Experimental Congestive Heart Failure , 2003, Circulation.

[51]  A. Quyyumi,et al.  Prognostic Value of Coronary Vascular Endothelial Dysfunction , 2002, Circulation.

[52]  J. Stasch,et al.  Cardiovascular actions of a novel NO‐independent guanylyl cyclase stimulator, BAY 41‐8543: in vivo studies , 2002, British journal of pharmacology.

[53]  J. Stasch,et al.  Pharmacological actions of a novel NO‐independent guanylyl cyclase stimulator, BAY 41‐8543: in vitro studies , 2002, British journal of pharmacology.

[54]  M. Pfeffer,et al.  Pulsatile Hemodynamics in Congestive Heart Failure , 2001, Hypertension.

[55]  M. Mulvany,et al.  Influence of Nitric Oxide Synthase and Adrenergic Inhibition on Adenosine-Induced Myocardial Hyperemia , 2001, Circulation.

[56]  Richard T. Lee,et al.  Endothelial Nitric Oxide Synthase Limits Left Ventricular Remodeling After Myocardial Infarction in Mice , 2001, Circulation.

[57]  J. Stasch,et al.  NO-independent stimulators of soluble guanylate cyclase. , 2001, Bioorganic & medicinal chemistry letters.

[58]  R. Gerzer,et al.  NO-independent regulatory site on soluble guanylate cyclase , 2001, Nature.

[59]  W. Colucci,et al.  Secondary pulmonary hypertension in chronic heart failure: the role of the endothelium in pathophysiology and management. , 2000, Circulation.

[60]  T. Bachetti Endothelial dysfunction in chronic heart failure: some new basic mechanisms. , 2000, Italian heart journal : official journal of the Italian Federation of Cardiology.

[61]  F. Lallemand,et al.  Improvement of endothelial function by chronic angiotensin-converting enzyme inhibition in heart failure : role of nitric oxide, prostanoids, oxidant stress, and bradykinin. , 2000, Circulation.

[62]  J. Michel,et al.  Hemodynamic stresses induce endothelial dysfunction and remodeling of pulmonary artery in experimental compensated heart failure. , 2000, Circulation.

[63]  A M Zeiher,et al.  Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. , 2000, Circulation.

[64]  S. Higano,et al.  Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction. , 2000, Circulation.

[65]  Paul C. Lee,et al.  Endothelial dysfunction in patients with heart failure: relationship to disease severity. , 2000, Journal of cardiac failure.

[66]  R. Ferrari,et al.  Serum from patients with severe heart failure downregulates eNOS and is proapoptotic: role of tumor necrosis factor-alpha. , 1999, Circulation.

[67]  Y. Takahashi,et al.  Effects of troglitazone on frequency of coronary vasospastic-induced angina pectoris in patients with diabetes mellitus. , 1999, The American journal of cardiology.

[68]  J P Cooke,et al.  Limb blood flow during exercise is dependent on nitric oxide. , 1998, Circulation.

[69]  I. Palacios,et al.  Coronary endothelial dysfunction in patients with acute-onset idiopathic dilated cardiomyopathy. , 1998, Journal of the American College of Cardiology.

[70]  B. Lorell,et al.  Effects of the nitric oxide donor sodium nitroprusside on intracellular pH and contraction in hypertrophied myocytes. , 1997, Circulation.

[71]  C A Beltrami,et al.  Apoptosis in the failing human heart. , 1997, The New England journal of medicine.

[72]  B. Bozkurt,et al.  Basic mechanisms in heart failure: the cytokine hypothesis. , 1996, Journal of cardiac failure.

[73]  W. Paulus,et al.  Myocardial contractile response to nitric oxide and cGMP. , 1996, Circulation.

[74]  C. Jones,et al.  Endothelial control of arterial distensibility is impaired in chronic heart failure. , 1995, Circulation.

[75]  A. Zeiher,et al.  Impaired endothelium-dependent vasodilation of coronary resistance vessels is associated with exercise-induced myocardial ischemia. , 1995, Circulation.

[76]  W. Paulus,et al.  Acute effects of nitric oxide on left ventricular relaxation and diastolic distensibility in humans. Assessment by bicoronary sodium nitroprusside infusion. , 1994, Circulation.

[77]  E. Lakatta,et al.  8-bromo-cGMP reduces the myofilament response to Ca2+ in intact cardiac myocytes. , 1994, Circulation research.

[78]  B. Greenberg,et al.  Diminished endothelium-derived relaxing factor activity in an experimental model of chronic heart failure. , 1991, Circulation research.

[79]  R D Fish,et al.  Endothelium-dependent dilation of the coronary microvasculature is impaired in dilated cardiomyopathy. , 1990, Circulation.

[80]  Seymour Reichlin,et al.  Handbook of experimental pharmacology , 1984 .

[81]  C. O'connor,et al.  Factors associated with improvement in ejection fraction in clinical practice among patients with heart failure: findings from IMPROVE HF. , 2012, American heart journal.

[82]  J. Stasch,et al.  Soluble Guanylate Cyclase: Allosteric Activation and Redox Regulation , 2010 .

[83]  J. Stasch,et al.  NO-independent, haem-dependent soluble guanylate cyclase stimulators. , 2009, Handbook of experimental pharmacology.

[84]  J. Stasch,et al.  Handbook of Experimental Pharmacology 191. cGMP: generators, effectors and therapeutic implications. Preface. , 2009, Handbook of experimental pharmacology.

[85]  J. Stasch,et al.  cGMP: Generators, Effectors and Therapeutic Implications , 2009 .

[86]  H. Kawachi,et al.  Enhancing cGMP in experimental progressive renal fibrosis: soluble guanylate cyclase stimulation vs. phosphodiesterase inhibition. , 2006, American journal of physiology. Renal physiology.

[87]  H. Drexler,et al.  Endothelial dysfunction in patients with chronic heart failure is independently associated with increased incidence of hospitalization, cardiac transplantation, or death. , 2005, European heart journal.

[88]  N. Vaziri,et al.  A high-fat, refined-carbohydrate diet induces endothelial dysfunction and oxidant/antioxidant imbalance and depresses NOS protein expression. , 2005, Journal of applied physiology.

[89]  G. Schuler,et al.  Exercise Capacity in Patients With Chronic Heart Failure Regular Physical Exercise Corrects Endothelial Dysfunction and Improves , 1998 .

[90]  P. Vanhoutte Endothelial dysfunction and vascular disease. , 1998, Verhandelingen - Koninklijke Academie voor Geneeskunde van Belgie.

[91]  G. Kojda,et al.  Low increase in cGMP induced by organic nitrates and nitrovasodilators improves contractile response of rat ventricular myocytes. , 1996, Circulation research.