Refined crystal structure of the influenza virus N9 neuraminidase-NC41 Fab complex.

[1]  I. Wilson,et al.  Structural evidence for induced fit as a mechanism for antibody-antigen recognition. , 1994, Science.

[2]  R. Webster,et al.  Crystal structures of two mutant neuraminidase-antibody complexes with amino acid substitutions in the interface. , 1992, Journal of molecular biology.

[3]  A. van Donkelaar,et al.  Refined atomic structures of N9 subtype influenza virus neuraminidase and escape mutants. , 1992, Journal of molecular biology.

[4]  A. Edmundson,et al.  An autoantibody to single‐stranded DNA: Comparison of the three‐dimensional structures of the unliganded fab and a deoxynucleotide–fab complex , 1991, Proteins.

[5]  P. Colman,et al.  Three-dimensional structure of the neuraminidase of influenza virus A/Tokyo/3/67 at 2.2 A resolution. , 1991, Journal of molecular biology.

[6]  T. Bhat,et al.  Crystallographic refinement of the three-dimensional structure of the FabD1.3-lysozyme complex at 2.5-A resolution. , 1991, The Journal of biological chemistry.

[7]  R L Stanfield,et al.  Crystal structures of an antibody to a peptide and its complex with peptide antigen at 2.8 A. , 1992, Science.

[8]  J. Skehel,et al.  Refinement of the influenza virus hemagglutinin by simulated annealing. , 1991, Journal of molecular biology.

[9]  C. Milstein,et al.  Three‐dimensional structure determination of an anti‐2‐phenyloxazolone antibody: the role of somatic mutation and heavy/light chain pairing in the maturation of an immune response. , 1990, The EMBO journal.

[10]  R. Poljak,et al.  Three-dimensional structure of an idiotope–anti-idiotope complex , 1990, Nature.

[11]  T. N. Bhat,et al.  Small rearrangements in structures of Fv and Fab fragments of antibody D 1.3 on antigen binding , 1990, Nature.

[12]  C. Chothia,et al.  The structure of protein-protein recognition sites. , 1990, The Journal of biological chemistry.

[13]  T. Steitz,et al.  Structural studies of protein–nucleic acid interaction: the sources of sequence-specific binding , 1990, Quarterly Reviews of Biophysics.

[14]  E. Padlan,et al.  Antibody-antigen complexes. , 1988, Annual review of biochemistry.

[15]  E. Padlan On the nature of antibody combining sites: Unusual structural features that may confer on these sites an enhanced capacity for binding ligands , 1990, Proteins.

[16]  A. Lesk,et al.  Conformations of immunoglobulin hypervariable regions , 1989, Nature.

[17]  G. Cohen,et al.  Structure of an antibody-antigen complex: crystal structure of the HyHEL-10 Fab-lysozyme complex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[18]  G. Air,et al.  Three-dimensional structures of influenza virus neuraminidase-antibody complexes. , 1989, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[19]  Molecular cloning and analysis of the N5 neuraminidase subtype from an avian influenza virus. , 1989, Virology.

[20]  E. Padlan,et al.  Comparative study of two Fab-lysozyme crystal structures. , 1989, Cold Spring Harbor symposia on quantitative biology.

[21]  T. Bhat,et al.  Immunochemical and crystallographic studies of antibody D1.3 in its free, antigen-liganded, and idiotope-bound states. , 1989, Cold Spring Harbor symposia on quantitative biology.

[22]  G. Air,et al.  Crystal structures of neuraminidase-antibody complexes. , 1989, Cold Spring Harbor symposia on quantitative biology.

[23]  M. Lascombe,et al.  Three-dimensional structure of Fab R19.9, a monoclonal murine antibody specific for the p-azobenzenearsonate group. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[24]  M. L. Mason,et al.  Three‐dimensional structure of a fluorescein–Fab complex crystallized in 2‐methyl‐2,4‐pentanediol , 1989, Proteins.

[25]  J. Brady,et al.  A revised potential-energy surface for molecular mechanics studies of carbohydrates. , 1988, Carbohydrate research.

[26]  A. Lesk,et al.  Elbow motion in the immunoglobulins involves a molecular ball-and-socket joint , 1988, Nature.

[27]  P. Argos An investigation of protein subunit and domain interfaces. , 1988, Protein engineering.

[28]  A. Brunger Crystallographic refinement by simulated annealing , 1988 .

[29]  P. Colman,et al.  Structure of antibody-antigen complexes: implications for immune recognition. , 1988, Advances in immunology.

[30]  B C Finzel,et al.  Three-dimensional structure of an antibody-antigen complex. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[31]  G. Air,et al.  Distribution of sequence differences in influenza N9 neuraminidase of tern and whale viruses and crystallization of the whale neuraminidase complexed with antibodies. , 1987, Virology.

[32]  J. L. Smith,et al.  Structure of myohemerythrin in the azidomet state at 1.7/1.3 A resolution. , 1987, Journal of molecular biology.

[33]  G. Air,et al.  Antigenic structure and variation in an influenza virus N9 neuraminidase , 1987, Journal of virology.

[34]  A. Lesk,et al.  Canonical structures for the hypervariable regions of immunoglobulins. , 1987, Journal of molecular biology.

[35]  B. Finzel Incorporation of fast Fourier transforms to speed restrained least‐squares refinement of protein structures , 1987 .

[36]  S. Sheriff Addition of symmetry‐related contact restraints to PROTIN and PROLSQ , 1987 .

[37]  P. Bartlett,et al.  Evaluation of intrinsic binding energy from a hydrogen bonding group in an enzyme inhibitor. , 1987, Science.

[38]  H M Holden,et al.  Structures of two thermolysin-inhibitor complexes that differ by a single hydrogen bond. , 1987, Science.

[39]  G. Air,et al.  Three‐dimensional structure of neuraminidase of subtype N9 from an avian influenza virus , 1987, Proteins.

[40]  Crystals of antibodies complexed with influenza virus neuraminidase show isosteric binding of antibody to wild-type and variant antigens. , 1987, Virology.

[41]  R. Poljak,et al.  The structural basis of antigen-antibody recognition. , 1987, Annual review of biophysics and biophysical chemistry.

[42]  J. N. Varghese,et al.  Three-dimensional structure of a complex of antibody with influenza virus neuraminidase , 1987, Nature.

[43]  R. Poljak,et al.  Three-dimensional structure of an antigen-antibody complex at 2.8 A resolution , 1986, Science.

[44]  W. J. Bean,et al.  Characterization of two influenza A viruses from a pilot whale , 1986, Journal of virology.

[45]  M. Buchmeier,et al.  Molecular mimicry: frequency of reactivity of monoclonal antiviral antibodies with normal tissues , 1986, Journal of virology.

[46]  T. Bhat,et al.  The galactan‐binding immunoglobulin Fab J539: An x‐ray diffraction study at 2.6‐Å resolution , 1986, Proteins.

[47]  Y. Satow,et al.  Phosphocholine binding immunoglobulin Fab McPC603. An X-ray diffraction study at 2.7 A. , 1985, Journal of molecular biology.

[48]  C. Chothia,et al.  Domain association in immunoglobulin molecules. The packing of variable domains. , 1985, Journal of molecular biology.

[49]  G. Air,et al.  Gene and protein sequence of an influenza neuraminidase with hemagglutinin activity. , 1985, Virology.

[50]  Jones Ta,et al.  Diffraction methods for biological macromolecules. Interactive computer graphics: FRODO. , 1985, Methods in enzymology.

[51]  B. C. Wang Resolution of phase ambiguity in macromolecular crystallography. , 1985, Methods in enzymology.

[52]  G. Cohen,et al.  On the specificity of antibody/antigen interactions: phosphocholine binding to McPC603 and the correlation of three-dimensional structure and sequence data. , 1985, Annales de l'Institut Pasteur. Immunologie.

[53]  W. Hendrickson Stereochemically restrained refinement of macromolecular structures. , 1985, Methods in enzymology.

[54]  P. Colman,et al.  Structure and diversity of influenza virus neuraminidase. , 1985, Current topics in microbiology and immunology.

[55]  G. Air,et al.  Influenza virus neuraminidase with hemagglutinin activity. , 1984, Virology.

[56]  E. Baker,et al.  Hydrogen bonding in globular proteins. , 1984, Progress in biophysics and molecular biology.

[57]  M. L. Connolly Analytical molecular surface calculation , 1983 .

[58]  J. N. Varghese,et al.  Structure of the catalytic and antigenic sites in influenza virus neuraminidase , 1983, Nature.

[59]  J. N. Varghese,et al.  Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 Å resolution , 1983, Nature.

[60]  S. Tonegawa Somatic generation of antibody diversity , 1983, Nature.

[61]  D. Davies,et al.  Structural basis of antibody function. , 1983, Annual review of immunology.

[62]  R. Webster,et al.  Crystalline monoclonal fab fragment with specificity towards an influenza virus neuraminidase. , 1981, Journal of molecular biology.

[63]  Dorothy Crowfoot Hodgkin,et al.  BIOMOLECULAR STRUCTURE, CONFORMATION, FUNCTION, AND EVOLUTION , 1981 .

[64]  W. Hendrickson,et al.  STEREOCHEMICALLY RESTRAINED CRYSTALLOGRAPHIC LEAST-SQUARES REFINEMENT OF MACROMOLECULE STRUCTURES , 1981 .

[65]  J. Seidman,et al.  Cloned human and mouse kappa immunoglobulin constant and J region genes conserve homology in functional segments , 1980, Cell.

[66]  J Deisenhofer,et al.  Crystallographic refinement and atomic models of the intact immunoglobulin molecule Kol and its antigen-binding fragment at 3.0 A and 1.0 A resolution. , 1980, Journal of molecular biology.

[67]  C. Auffray,et al.  Structure of the constant and 3' untranslated regions of the murine Balb/c gamma 2a heavy chain messenger RNA. , 1980, Nucleic acids research.

[68]  M Karplus,et al.  Side-chain torsional potentials: effect of dipeptide, protein, and solvent environment. , 1979, Biochemistry.

[69]  Michael G. Rossmann,et al.  Processing oscillation diffraction data for very large unit cells with an automatic convolution technique and profile fitting , 1979 .

[70]  R. Poljak,et al.  Three-dimensional structure of immunoglobulins. , 1979, Annual review of biochemistry.

[71]  L M Amzel,et al.  Preliminary refinement and structural analysis of the Fab fragment from human immunoglobulin new at 2.0 A resolution. , 1981, The Journal of biological chemistry.

[72]  W. G. Laver,et al.  The ecology of influenza. Isolation of type 'A' influenza viruses from Australian pelagic birds. , 1977, The Australian journal of experimental biology and medical science.

[73]  G J Williams,et al.  The Protein Data Bank: a computer-based archival file for macromolecular structures. , 1977, Journal of molecular biology.

[74]  R. Huber,et al.  The molecular structure of a dimer composed of the variable portions of the Bence-Jones protein REI refined at 2.0-A resolution. , 1975, Biochemistry.

[75]  C. Chothia,et al.  Principles of protein–protein recognition , 1975, Nature.

[76]  E. Padlan,et al.  Three-dimensional structure of immunoglobulins. , 1975, Annual review of biochemistry.

[77]  K. R. Ely,et al.  Binding of 2,4-dinitrophenyl compounds and other small molecules to a crystalline lambda-type Bence-Jones dimer. , 1974, Biochemistry.

[78]  L M Amzel,et al.  The three dimensional structure of a combining region-ligand complex of immunoglobulin NEW at 3.5-A resolution. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[79]  F. Richards The interpretation of protein structures: total volume, group volume distributions and packing density. , 1974, Journal of molecular biology.

[80]  E. Padlan,et al.  Structure at 4.5 A resolution of a phosphorylcholine-binding fab. , 1973, Nature: New biology.

[81]  B. Lee,et al.  The interpretation of protein structures: estimation of static accessibility. , 1971, Journal of molecular biology.

[82]  E. Lattman,et al.  Representation of phase probability distributions for simplified combination of independent phase information , 1970 .

[83]  G. N. Ramachandran,et al.  Conformation of polypeptides and proteins. , 1968, Advances in protein chemistry.

[84]  P. W. Bowman,et al.  PHS Public Health Service , 1963 .

[85]  V. Luzzati,et al.  Traitement statistique des erreurs dans la determination des structures cristallines , 1952 .