Dynamics of pattern formation in biomimetic systems.

This paper is an attempt to conceptualize pattern formation in self-organizing systems and, in particular, to understand how structures, oscillations or waves arise in a steady and homogenous environment, a phenomenon called symmetry breaking. The route followed to develop these ideas was to couple chemical oscillations produced by Belousov-Zhabotinsky reaction with confined reaction environments, the latter being an essential requirement for any process of Life. Special focus was placed on systems showing organic or lipidic compartments, which represent more reliable biomimetic matrices.

[1]  R. M. Noyes,et al.  Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction , 1974 .

[2]  M. Yoneyama,et al.  Chemical Waves on the Surface of a Photosensitive Monolayer , 1994 .

[3]  N. Marchettini,et al.  An experimental model for mimicking biological systems: The Belousov–Zhabotinsky reaction in lipid membranes , 2006 .

[4]  D. Deamer,et al.  The first cell membranes. , 2002, Astrobiology.

[5]  I. Epstein,et al.  Pattern formation in a tunable medium: the Belousov-Zhabotinsky reaction in an aerosol OT microemulsion. , 2001, Physical review letters.

[6]  David W. Deamer,et al.  Boundary structures are formed by organic components of the Murchison carbonaceous chondrite , 1985, Nature.

[7]  Z Noszticzius,et al.  HPLC analysis of complete BZ systems. Evolution of the chemical composition in cerium and ferroin catalysed batch oscillators: experiments and model calculations. , 2002, Faraday discussions.

[8]  H. Berg,et al.  Complex patterns formed by motile cells of Escherichia coli , 1991, Nature.

[9]  D. Lancet,et al.  Composing life , 2000, EMBO reports.

[10]  N. Marchettini,et al.  Chemical waves and pattern formation in the 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/water lamellar system. , 2004, Journal of the American Chemical Society.

[11]  L. Sciascia,et al.  Spatio-temporal perturbation of the dynamics of the ferroin catalyzed Belousov-Zhabotinsky reaction in a batch reactor caused by sodium dodecyl sulfate micelles. , 2008, The journal of physical chemistry. B.

[12]  H. Haken Synergetics: an Introduction, Nonequilibrium Phase Transitions and Self-organization in Physics, Chemistry, and Biology , 1977 .

[13]  Benno Hess,et al.  Curvature and spiral geometry in aggregation patterns of Dictyostelium discoideum , 1990 .

[14]  T. Benvegnu,et al.  Archaeabacteria bipolar lipid analogues: structure, synthesis and lyotropic properties , 2004 .

[15]  S. Bastianoni,et al.  Chemical waves. , 2006, Chemistry.

[16]  I. Prigogine Time, Structure, and Fluctuations , 1978, Science.

[17]  P. Maini,et al.  Developmental biology. The Turing model comes of molecular age. , 2006, Science.

[18]  L. Margulis Archaeal-eubacterial mergers in the origin of Eukarya: phylogenetic classification of life. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[19]  V. Vanag Waves and patterns in reaction-diffusion systems. Belousov-Zhabotinsky reaction in water-in-oil microemulsions , 2004 .

[20]  John J. Tyson,et al.  Scaling and reducing the Field-Koros-Noyes mechanism of the Belousov-Zhabotinskii reaction , 1982 .

[21]  A. Gliozzi,et al.  Structure, Biosynthesis, and Physicochemical Properties of Archaebacterial Lipids , 1986, Microbiological reviews.

[22]  Vladimir K. Vanag,et al.  Pattern Formation in a Tunable Medium , 2001 .

[23]  Vladimir K. Vanag,et al.  Segmented spiral waves in a reaction-diffusion system , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[24]  S. Chan,et al.  Physicochemical characterization of 1,2-diphytanoyl-sn-glycero-3-phosphocholine in model membrane systems. , 1979, Biochimica et biophysica acta.

[25]  Grégoire Nicolis,et al.  Self-Organization in nonequilibrium systems , 1977 .

[26]  Irving R Epstein,et al.  Complex patterns in reactive microemulsions: self-organized nanostructures? , 2005, Chaos.

[27]  P. Luisi The Emergence of Life: Autopoiesis: the logic of cellular life , 2006 .

[28]  Irving R. Epstein,et al.  An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos , 1998 .

[29]  P. Glansdorff,et al.  Thermodynamic theory of structure, stability and fluctuations , 1971 .

[30]  John Maynard Smith,et al.  The major evolutionary transitions , 1995, Nature.

[31]  Tomohiko Yamaguchi,et al.  Self-Organization of Hierarchy: Dissipative-Structure Assisted Self-Assembly of Metal Nanoparticles in Polymer Matrices , 2003 .

[32]  N. Marchettini,et al.  Interplay between the Belousov Zhabotinsky reaction diffusion system and biomimetic matrices , 2007 .

[33]  A. Zhabotinsky,et al.  Concentration Wave Propagation in Two-dimensional Liquid-phase Self-oscillating System , 1970, Nature.

[34]  P. Walde,et al.  Prebiotic chemistry : from simple amphiphiles to protocell models , 2005 .

[35]  D. Avnir,et al.  Spatial dissipative structures formed by spontaneous molecular aggregation at interfaces , 2004, Origins of life.

[36]  D. Deamer,et al.  The Lipid World , 2001, Origins of life and evolution of the biosphere.

[37]  J. Trevors Early assembly of cellular life. , 2003, Progress in biophysics and molecular biology.

[38]  B. Hess,et al.  Gel systems for the Belousov-Zhabotinskii reaction , 1991 .

[39]  Dulos,et al.  Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern. , 1990, Physical review letters.

[40]  John A. Pojman,et al.  Nonlinear dynamics in polymeric systems , 2003 .

[41]  Pier Luigi Luisi,et al.  Self-replicating micelles: aqueous micelles and enzymatically driven reactions in reverse micelles , 1991 .

[42]  G. Chang,et al.  Reverse micelles as life-mimicking systems. , 2000, Proceedings of the National Science Council, Republic of China. Part B, Life sciences.

[43]  Annette F. Taylor,et al.  Mechanism and Phenomenology of an Oscillating Chemical Reaction , 2002 .

[44]  J. Tyson What Everyone Should Know About the Belousov-Zhabotinsky Reaction , 1994 .

[45]  Tamás Turányi,et al.  Mechanistic details of the oscillatory Belousov-Zhabotinskii reaction , 1990 .

[46]  P. Maini,et al.  The Turing Model Comes of Molecular Age , 2006, Science.

[47]  N. Shanks Modeling Biological Systems: The Belousov–Zhabotinsky Reaction , 2001 .

[48]  Cox,et al.  Competing patterns of signaling activity in dictyostelium discoideum. , 1996, Physical review letters.

[49]  Timothy P. Mui,et al.  Prebiotic Synthesis of Nucleotides , 2001, Origins of life and evolution of the biosphere.

[50]  Pier Luigi Luisi,et al.  Autocatalytic self-replicating micelles as models for prebiotic structures , 1992, Nature.

[51]  F. Varela,et al.  Self-replicating micelles — A chemical version of a minimal autopoietic system , 1989, Origins of life and evolution of the biosphere.

[52]  Shigeru Kondo,et al.  Traveling stripes on the skin of a mutant mouse , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Irving R Epstein,et al.  Dash waves in a reaction-diffusion system. , 2003, Physical review letters.

[54]  H. Urey,et al.  Organic compound synthesis on the primitive earth. , 1959, Science.

[55]  Tomohiko Yamaguchi,et al.  Introduction: Engineering of self-organized nanostructures , 2005 .

[56]  Pier Luigi Luisi,et al.  Self-replicating Reverse Micelles and Chemical Autopoiesis , 1990 .

[57]  R. M. Noyes,et al.  Oscillations in chemical systems. II. Thorough analysis of temporal oscillation in the bromate-cerium-malonic acid system , 1972 .

[58]  Purificación López-García,et al.  Ancestral lipid biosynthesis and early membrane evolution. , 2004, Trends in biochemical sciences.

[59]  D. Deamer,et al.  Amphiphilic components of the murchison carbonaceous chondrite: Surface properties and membrane formation , 2005, Origins of life and evolution of the biosphere.

[60]  P. Luisi,et al.  Autopoietic Self-Reproduction of Fatty Acid Vesicles , 1994 .

[61]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[62]  W. Hung,et al.  Order-disorder transition in bilayers of diphytanoyl phosphatidylcholine. , 2000, Biochimica et biophysica acta.

[63]  M. Millonas,et al.  The role of trans-membrane signal transduction in turing-type cellular pattern formation. , 2004, Journal of theoretical biology.

[64]  Vladimir K. Vanag,et al.  Inwardly Rotating Spiral Waves in a Reaction-Diffusion System , 2001, Science.

[65]  H. Berg,et al.  Dynamics of formation of symmetrical patterns by chemotactic bacteria , 1995, Nature.

[66]  Z. Noszticzius,et al.  The role of radicals in the Belousov-Zhabotinsky reaction , 1990 .

[67]  Enzo Tiezzi,et al.  Steps Towards An Evolutionary Physics , 2006 .

[68]  P. Luisi,et al.  Lipid vesicles as possible intermediates in the origin of life , 1999 .

[69]  L. Sciascia,et al.  Nonlinear response of a batch BZ oscillator to the addition of the anionic surfactant sodium dodecyl sulfate. , 2007, The journal of physical chemistry. B.

[70]  Raffaele Saladino,et al.  Advances in the Prebiotic Synthesis of Nucleic Acids Bases: Implications for the Origin of Life , 2004 .

[71]  John E. Pearson,et al.  Chemical pattern formation with equal diffusion coefficients , 1987 .

[72]  David G Míguez,et al.  On the orientation of stripes in fish skin patterning. , 2006, Biophysical chemistry.

[73]  M. Grätzel,et al.  Kinetics and Catalysis in Microheterogeneous Systems , 1991 .

[74]  R. J. Field,et al.  Stationary concentration patterns in the oregonator model of the Belousov-Zhabotinskii reaction , 1985 .

[75]  Lars Folke Olsen,et al.  Biochemical oscillations and cellular rhythms: The molecular bases of periodic and chaotic behaviour: Albert Goldbeter. Cambridge University Press, Cambridge, 1996. $99.95 (cloth), 605 + xxiv pp , 1997 .

[76]  S. Kondo,et al.  A reaction–diffusion wave on the skin of the marine angelfish Pomacanthus , 1995, Nature.

[77]  B. Hess,et al.  Oscillatory phenomena in biochemistry. , 1971, Annual review of biochemistry.

[78]  Masayoshi Watanabe,et al.  Self-sustaining peristaltic motion on the surface of a porous gel. , 2003, Journal of the American Chemical Society.

[79]  E. Schrödinger,et al.  What is life? : the physical aspect of the living cell , 1946 .

[80]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[81]  Stanley L. Miller,et al.  Organic Compound Synthes on the Primitive Eart: Several questions about the origin of life have been answered, but much remains to be studied , 1959 .

[82]  H. Haken Advanced Synergetics: Instability Hierarchies of Self-Organizing Systems and Devices , 1983 .

[83]  B. Palsson,et al.  The evolution of molecular biology into systems biology , 2004, Nature Biotechnology.

[84]  久保 亮五,et al.  H. Haken: Synergetics; An Introduction Non-equilibrium Phase Transitions and Self-Organization in Physics, Chemistry and Biology, Springer-Verlag, Berlin and Heidelberg, 1977, viii+325ページ, 251×17.5cm, 11,520円. , 1978 .

[85]  Yoh Iwasa,et al.  Directionality of stripes formed by anisotropic reaction-diffusion models. , 2002, Journal of theoretical biology.