Strain-Induced Electronic Structure and Bandgap Transition in Bilayer $\text{MoSe}_{2}$ of AB and AA Stacking Order

The transition-metal dichalcogenides (TMDC) materials have received intensive research interest for strain engineering applications. In this work, we report the biaxial strain $(\varepsilon)$ -induced electronic structure of AB and AA stacked 2L $\text{MoSe}_{2}$ using Density functional theory (DFT) calculations. We found that AB stacked 2L $\mathbf{MoSe}_{2}$ remains its intrinsic indirect bandgap transition $(\Gamma-\Sigma_{\min})$ within the strain range from -1.8 % to +0.3%. An indirect to direct bandgap crossover is observed in AA stacked 2L $\text{MoSe}_{2}$ at a practically achievable strain value of -0.1%. The direct bandgap value for AA-stacked $\mathbf{MoSe}_{2}$ makes it a promising candidate for optoelectronic device applications. For the higher strain (-2% $< \varepsilon >$ 0.5%), both AB and AA stacked 2L $\text{MoSe}_{2}$ have similar bandgap tunability and transition.

[1]  D. Somvanshi,et al.  Strain-dependent doping behavior of WSe2 monolayer: A first-principle calculation , 2022, Europhysics Letters.

[2]  D. Somvanshi,et al.  A comparative study of biaxial strain modulated electronic structure of MSe2 (M = W, Mo) monolayer , 2021, 2021 5th International Conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech).

[3]  D. Somvanshi,et al.  Effect of biaxial strain on the electronic structure of Nb-doped WSe2 monolayer: a theoretical study , 2021, 2021 Devices for Integrated Circuit (DevIC).

[4]  J. Parthenios,et al.  Biaxial strain engineering of CVD and exfoliated single- and bi-layer MoS2 crystals , 2020, 2D Materials.

[5]  Z. Zhu,et al.  Controllable Epitaxial Growth of MoSe2 Bilayers with Different Stacking Orders by Reverse-flow Chemical Vapor Deposition. , 2020, ACS applied materials & interfaces.

[6]  S. Jit,et al.  Transition metal dichalcogenides based two-dimensional heterostructures for optoelectronic applications , 2020 .

[7]  Rong Yang,et al.  Weakened interlayer coupling in two-dimensional MoSe2 flakes with screw dislocations , 2019, Nano Research.

[8]  Kurt Stokbro,et al.  QuantumATK: an integrated platform of electronic and atomic-scale modelling tools , 2019, Journal of physics. Condensed matter : an Institute of Physics journal.

[9]  Kai Liu,et al.  Strain engineering in functional 2-dimensional materials , 2019, Journal of Applied Physics.

[10]  H. Nan,et al.  Transition metal dichalcogenides bilayer single crystals by reverse-flow chemical vapor epitaxy , 2019, Nature Communications.

[11]  Luqi Liu,et al.  Strain Engineering of 2D Materials: Issues and Opportunities at the Interface , 2019, Advanced materials.

[12]  D. Mejía-Rodríguez,et al.  Deorbitalization strategies for meta-generalized-gradient-approximation exchange-correlation functionals , 2017, 1710.06032.

[13]  Beng Kang Tay,et al.  Electronic Properties of Bulk and Monolayer TMDs: Theoretical Study Within DFT Framework (GVJ‐2e Method) , 2017 .

[14]  O. Frank,et al.  Tuning the electronic properties of monolayer and bilayer transition metal dichalcogenide compounds under direct out-of-plane compression. , 2017, Physical chemistry chemical physics : PCCP.

[15]  M. Rohlfing,et al.  Biaxial strain tuning of the optical properties of single-layer transition metal dichalcogenides , 2017, npj 2D Materials and Applications.

[16]  P. Ajayan,et al.  Optical study of local strain related disordering in CVD-grown MoSe2 monolayers , 2016 .

[17]  P. Ajayan,et al.  Spectroscopic Signatures of AA' and AB Stacking of Chemical Vapor Deposited Bilayer MoS2. , 2015, ACS nano.

[18]  Giuseppe Iannaccone,et al.  Electronics based on two-dimensional materials. , 2014, Nature nanotechnology.

[19]  C. Battaglia,et al.  Strain-induced indirect to direct bandgap transition in multilayer WSe2. , 2014, Nano letters.

[20]  S. Louie,et al.  Evolution of interlayer coupling in twisted molybdenum disulfide bilayers , 2014, Nature Communications.

[21]  S. Louie,et al.  Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. , 2014, Nature materials.

[22]  C. Franchini,et al.  Stacking effects on the electronic and optical properties of bilayer transition metal dichalcogenides MoS 2 , MoSe 2 , WS 2 , and WSe 2 , 2014 .

[23]  L. Lauhon,et al.  Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. , 2014, ACS nano.

[24]  V. Staroverov,et al.  Apparent violation of the sum rule for exchange-correlation charges by generalized gradient approximations. , 2013, The Journal of chemical physics.

[25]  Ashok Kumar,et al.  Semiconductor to metal transition in bilayer transition metals dichalcogenides MX2 (M = Mo, W; X = S, Se, Te) , 2013 .

[26]  Jed I. Ziegler,et al.  Bandgap engineering of strained monolayer and bilayer MoS2. , 2013, Nano letters.

[27]  K. Novoselov,et al.  A roadmap for graphene , 2012, Nature.

[28]  V. Shenoy,et al.  Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. , 2012, ACS nano.

[29]  A. Singh,et al.  Semiconductor-metal transition in semiconducting bilayer sheets of transition metal dichalcogenides , 2012, 1203.6820.

[30]  Andras Kis,et al.  Stretching and breaking of ultrathin MoS2. , 2011, ACS nano.

[31]  Thomas M Henderson,et al.  Screened hybrid density functionals for solid-state chemistry and physics. , 2009, Physical chemistry chemical physics : PCCP.

[32]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[33]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .